使用本地化 PIT 映射的校准多元回归

Lucas Kock, G. S. Rodrigues, Scott A. Sisson, Nadja Klein, David J. Nott
{"title":"使用本地化 PIT 映射的校准多元回归","authors":"Lucas Kock, G. S. Rodrigues, Scott A. Sisson, Nadja Klein, David J. Nott","doi":"arxiv-2409.10855","DOIUrl":null,"url":null,"abstract":"Calibration ensures that predicted uncertainties align with observed\nuncertainties. While there is an extensive literature on recalibration methods\nfor univariate probabilistic forecasts, work on calibration for multivariate\nforecasts is much more limited. This paper introduces a novel post-hoc\nrecalibration approach that addresses multivariate calibration for potentially\nmisspecified models. Our method involves constructing local mappings between\nvectors of marginal probability integral transform values and the space of\nobservations, providing a flexible and model free solution applicable to\ncontinuous, discrete, and mixed responses. We present two versions of our\napproach: one uses K-nearest neighbors, and the other uses normalizing flows.\nEach method has its own strengths in different situations. We demonstrate the\neffectiveness of our approach on two real data applications: recalibrating a\ndeep neural network's currency exchange rate forecast and improving a\nregression model for childhood malnutrition in India for which the multivariate\nresponse has both discrete and continuous components.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibrated Multivariate Regression with Localized PIT Mappings\",\"authors\":\"Lucas Kock, G. S. Rodrigues, Scott A. Sisson, Nadja Klein, David J. Nott\",\"doi\":\"arxiv-2409.10855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Calibration ensures that predicted uncertainties align with observed\\nuncertainties. While there is an extensive literature on recalibration methods\\nfor univariate probabilistic forecasts, work on calibration for multivariate\\nforecasts is much more limited. This paper introduces a novel post-hoc\\nrecalibration approach that addresses multivariate calibration for potentially\\nmisspecified models. Our method involves constructing local mappings between\\nvectors of marginal probability integral transform values and the space of\\nobservations, providing a flexible and model free solution applicable to\\ncontinuous, discrete, and mixed responses. We present two versions of our\\napproach: one uses K-nearest neighbors, and the other uses normalizing flows.\\nEach method has its own strengths in different situations. We demonstrate the\\neffectiveness of our approach on two real data applications: recalibrating a\\ndeep neural network's currency exchange rate forecast and improving a\\nregression model for childhood malnutrition in India for which the multivariate\\nresponse has both discrete and continuous components.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

校准可确保预测的不确定性与观测到的不确定性相一致。关于单变量概率预测的重新校准方法已有大量文献,但关于多变量预测的校准工作则有限得多。本文介绍了一种新颖的事后重新校准方法,可解决潜在不确定模型的多变量校准问题。我们的方法涉及在边际概率积分变换值向量和观测空间之间构建局部映射,提供一种灵活的、不受模型限制的解决方案,适用于连续、离散和混合响应。我们介绍了我们方法的两个版本:一个使用 K 最近邻,另一个使用归一化流。我们在两个实际数据应用中展示了我们方法的有效性:重新校准深度神经网络的汇率预测,以及改进印度儿童营养不良的回归模型,其中多变量响应既有离散成分,也有连续成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Calibrated Multivariate Regression with Localized PIT Mappings
Calibration ensures that predicted uncertainties align with observed uncertainties. While there is an extensive literature on recalibration methods for univariate probabilistic forecasts, work on calibration for multivariate forecasts is much more limited. This paper introduces a novel post-hoc recalibration approach that addresses multivariate calibration for potentially misspecified models. Our method involves constructing local mappings between vectors of marginal probability integral transform values and the space of observations, providing a flexible and model free solution applicable to continuous, discrete, and mixed responses. We present two versions of our approach: one uses K-nearest neighbors, and the other uses normalizing flows. Each method has its own strengths in different situations. We demonstrate the effectiveness of our approach on two real data applications: recalibrating a deep neural network's currency exchange rate forecast and improving a regression model for childhood malnutrition in India for which the multivariate response has both discrete and continuous components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1