零膨胀泊松响应变量纵向模型中缺失数据的估计和估算

D. S. Martinez-Lobo, O. O. Melo, N. A. Cruz
{"title":"零膨胀泊松响应变量纵向模型中缺失数据的估计和估算","authors":"D. S. Martinez-Lobo, O. O. Melo, N. A. Cruz","doi":"arxiv-2409.11040","DOIUrl":null,"url":null,"abstract":"This research deals with the estimation and imputation of missing data in\nlongitudinal models with a Poisson response variable inflated with zeros. A\nmethodology is proposed that is based on the use of maximum likelihood,\nassuming that data is missing at random and that there is a correlation between\nthe response variables. In each of the times, the expectation maximization (EM)\nalgorithm is used: in step E, a weighted regression is carried out, conditioned\non the previous times that are taken as covariates. In step M, the estimation\nand imputation of the missing data are performed. The good performance of the\nmethodology in different loss scenarios is demonstrated in a simulation study\ncomparing the model only with complete data, and estimating missing data using\nthe mode of the data of each individual. Furthermore, in a study related to the\ngrowth of corn, it is tested on real data to develop the algorithm in a\npractical scenario.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"203 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation and imputation of missing data in longitudinal models with Zero-Inflated Poisson response variable\",\"authors\":\"D. S. Martinez-Lobo, O. O. Melo, N. A. Cruz\",\"doi\":\"arxiv-2409.11040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research deals with the estimation and imputation of missing data in\\nlongitudinal models with a Poisson response variable inflated with zeros. A\\nmethodology is proposed that is based on the use of maximum likelihood,\\nassuming that data is missing at random and that there is a correlation between\\nthe response variables. In each of the times, the expectation maximization (EM)\\nalgorithm is used: in step E, a weighted regression is carried out, conditioned\\non the previous times that are taken as covariates. In step M, the estimation\\nand imputation of the missing data are performed. The good performance of the\\nmethodology in different loss scenarios is demonstrated in a simulation study\\ncomparing the model only with complete data, and estimating missing data using\\nthe mode of the data of each individual. Furthermore, in a study related to the\\ngrowth of corn, it is tested on real data to develop the algorithm in a\\npractical scenario.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"203 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了在纵向模型中,对带有零填充的泊松响应变量的缺失数据进行估计和估算的问题。研究提出了一种基于最大似然法的方法,假设数据是随机缺失的,且响应变量之间存在相关性。在每个时间段,都使用期望最大化(EM)算法:在步骤 E 中,以作为协变量的前几个时间段为条件,进行加权回归。在步骤 M 中,对缺失数据进行估计和估算。在一项模拟研究中,仅使用完整数据对模型进行了比较,并使用每个个体的数据模式对缺失数据进行了估计,结果表明该方法在不同的损失情况下具有良好的性能。此外,在一项与玉米生长相关的研究中,对真实数据进行了测试,以便在实际场景中开发算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation and imputation of missing data in longitudinal models with Zero-Inflated Poisson response variable
This research deals with the estimation and imputation of missing data in longitudinal models with a Poisson response variable inflated with zeros. A methodology is proposed that is based on the use of maximum likelihood, assuming that data is missing at random and that there is a correlation between the response variables. In each of the times, the expectation maximization (EM) algorithm is used: in step E, a weighted regression is carried out, conditioned on the previous times that are taken as covariates. In step M, the estimation and imputation of the missing data are performed. The good performance of the methodology in different loss scenarios is demonstrated in a simulation study comparing the model only with complete data, and estimating missing data using the mode of the data of each individual. Furthermore, in a study related to the growth of corn, it is tested on real data to develop the algorithm in a practical scenario.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1