关于预测合成公式的证明

Riku Masuda, Kaoru Irie
{"title":"关于预测合成公式的证明","authors":"Riku Masuda, Kaoru Irie","doi":"arxiv-2409.09660","DOIUrl":null,"url":null,"abstract":"Bayesian predictive synthesis is useful in synthesizing multiple predictive\ndistributions coherently. However, the proof for the fundamental equation of\nthe synthesized predictive density has been missing. In this technical report,\nwe review the series of research on predictive synthesis, then fill the gap\nbetween the known results and the equation used in modern applications. We\nprovide two proofs and clarify the structure of predictive synthesis.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Proofs of the Predictive Synthesis Formula\",\"authors\":\"Riku Masuda, Kaoru Irie\",\"doi\":\"arxiv-2409.09660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bayesian predictive synthesis is useful in synthesizing multiple predictive\\ndistributions coherently. However, the proof for the fundamental equation of\\nthe synthesized predictive density has been missing. In this technical report,\\nwe review the series of research on predictive synthesis, then fill the gap\\nbetween the known results and the equation used in modern applications. We\\nprovide two proofs and clarify the structure of predictive synthesis.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09660\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

贝叶斯预测合成法有助于连贯地合成多个预测分布。然而,合成预测密度基本方程的证明一直缺失。在本技术报告中,我们回顾了有关预测合成的一系列研究,然后填补了已知结果与现代应用中所用方程之间的空白。我们提供了两个证明,并阐明了预测合成的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the Proofs of the Predictive Synthesis Formula
Bayesian predictive synthesis is useful in synthesizing multiple predictive distributions coherently. However, the proof for the fundamental equation of the synthesized predictive density has been missing. In this technical report, we review the series of research on predictive synthesis, then fill the gap between the known results and the equation used in modern applications. We provide two proofs and clarify the structure of predictive synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1