基于等几何分析方法的各向异性多层周期结构的多尺度拓扑优化

IF 1.9 3区 工程技术 Q3 MECHANICS Meccanica Pub Date : 2024-09-14 DOI:10.1007/s11012-024-01873-4
Jianping Zhang, Jiahong Chen, Jiangpeng Peng, Yi Qiu, Zhijian Zuo, Zhiqiang Zhang
{"title":"基于等几何分析方法的各向异性多层周期结构的多尺度拓扑优化","authors":"Jianping Zhang, Jiahong Chen, Jiangpeng Peng, Yi Qiu, Zhijian Zuo, Zhiqiang Zhang","doi":"10.1007/s11012-024-01873-4","DOIUrl":null,"url":null,"abstract":"<p>A multiscale topology optimization model of anisotropic multilayer periodic structures (MPS) is proposed using the isogeometric analysis (IGA) method. The integrative design of multiscale structures was realized in two stages: the distribution optimization of multilayer periodic materials, which determines the types, distribution, and volume fraction of microstructures, and parallel topology optimization, which optimizes the macrostructure and various microstructures simultaneously. To implement the multilayer periodic constraint, the relative density and sensitivity of the IGA control points were equally redistributed. The correctness and advantages of the proposed model were confirmed by comparing its results with those obtained using finite element methods, and the optimal IGA microstructures displayed smoother boundaries. In addition, the multiscale MPS of the cantilever was 3D printed, confirming the practicality of the proposed model. The influences of the regularization scheme, multilayer periodic constraints, and Poisson's ratio factor on the results of the multiscale multilayer periodic optimization were explored, and recommendations for proper values of these parameters were provided to enhance the structural stiffness.</p>","PeriodicalId":695,"journal":{"name":"Meccanica","volume":"195 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiscale topology optimization of anisotropic multilayer periodic structures based on the isogeometric analysis method\",\"authors\":\"Jianping Zhang, Jiahong Chen, Jiangpeng Peng, Yi Qiu, Zhijian Zuo, Zhiqiang Zhang\",\"doi\":\"10.1007/s11012-024-01873-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A multiscale topology optimization model of anisotropic multilayer periodic structures (MPS) is proposed using the isogeometric analysis (IGA) method. The integrative design of multiscale structures was realized in two stages: the distribution optimization of multilayer periodic materials, which determines the types, distribution, and volume fraction of microstructures, and parallel topology optimization, which optimizes the macrostructure and various microstructures simultaneously. To implement the multilayer periodic constraint, the relative density and sensitivity of the IGA control points were equally redistributed. The correctness and advantages of the proposed model were confirmed by comparing its results with those obtained using finite element methods, and the optimal IGA microstructures displayed smoother boundaries. In addition, the multiscale MPS of the cantilever was 3D printed, confirming the practicality of the proposed model. The influences of the regularization scheme, multilayer periodic constraints, and Poisson's ratio factor on the results of the multiscale multilayer periodic optimization were explored, and recommendations for proper values of these parameters were provided to enhance the structural stiffness.</p>\",\"PeriodicalId\":695,\"journal\":{\"name\":\"Meccanica\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meccanica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11012-024-01873-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meccanica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11012-024-01873-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

利用等几何分析(IGA)方法提出了各向异性多层周期结构(MPS)的多尺度拓扑优化模型。多尺度结构的综合设计分两个阶段实现:一是多层周期材料分布优化,即确定微结构的类型、分布和体积分数;二是并行拓扑优化,即同时优化宏观结构和各种微结构。为了实现多层周期约束,IGA 控制点的相对密度和灵敏度被平均重新分配。通过与使用有限元方法得出的结果进行比较,证实了所提模型的正确性和优势,而且优化的 IGA 微结构显示出更平滑的边界。此外,悬臂的多尺度 MPS 已实现 3D 打印,证实了所提模型的实用性。研究还探讨了正则化方案、多层周期约束和泊松比系数对多尺度多层周期优化结果的影响,并就这些参数的适当取值提出了建议,以增强结构刚度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiscale topology optimization of anisotropic multilayer periodic structures based on the isogeometric analysis method

A multiscale topology optimization model of anisotropic multilayer periodic structures (MPS) is proposed using the isogeometric analysis (IGA) method. The integrative design of multiscale structures was realized in two stages: the distribution optimization of multilayer periodic materials, which determines the types, distribution, and volume fraction of microstructures, and parallel topology optimization, which optimizes the macrostructure and various microstructures simultaneously. To implement the multilayer periodic constraint, the relative density and sensitivity of the IGA control points were equally redistributed. The correctness and advantages of the proposed model were confirmed by comparing its results with those obtained using finite element methods, and the optimal IGA microstructures displayed smoother boundaries. In addition, the multiscale MPS of the cantilever was 3D printed, confirming the practicality of the proposed model. The influences of the regularization scheme, multilayer periodic constraints, and Poisson's ratio factor on the results of the multiscale multilayer periodic optimization were explored, and recommendations for proper values of these parameters were provided to enhance the structural stiffness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meccanica
Meccanica 物理-力学
CiteScore
4.70
自引率
3.70%
发文量
151
审稿时长
7 months
期刊介绍: Meccanica focuses on the methodological framework shared by mechanical scientists when addressing theoretical or applied problems. Original papers address various aspects of mechanical and mathematical modeling, of solution, as well as of analysis of system behavior. The journal explores fundamental and applications issues in established areas of mechanics research as well as in emerging fields; contemporary research on general mechanics, solid and structural mechanics, fluid mechanics, and mechanics of machines; interdisciplinary fields between mechanics and other mathematical and engineering sciences; interaction of mechanics with dynamical systems, advanced materials, control and computation; electromechanics; biomechanics. Articles include full length papers; topical overviews; brief notes; discussions and comments on published papers; book reviews; and an international calendar of conferences. Meccanica, the official journal of the Italian Association of Theoretical and Applied Mechanics, was established in 1966.
期刊最新文献
Investigation of droplet collision characteristics with moving film and its comparison with stationary film: unsteady and 3D CLSVOF method Compound control method for reliability of the robotic arms with clearance joint Multiscale topology optimization of anisotropic multilayer periodic structures based on the isogeometric analysis method CFD and ray tracing analysis of a discrete nozzle for laser metal deposition Design and performance investigation of a sliding-mode adaptive proportional–integral–derivative control for cable-breakage scenario
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1