了解细胞色素 P450 酶的底物抑制作用和消除策略的前景

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY ChemBioChem Pub Date : 2024-09-17 DOI:10.1002/cbic.202400297
Yisang Zhang, Guobin Zhang, Taichang Wang, Yu Chen, Junqing Wang, Piwu Li, Ruiming Wang, Jing Su
{"title":"了解细胞色素 P450 酶的底物抑制作用和消除策略的前景","authors":"Yisang Zhang, Guobin Zhang, Taichang Wang, Yu Chen, Junqing Wang, Piwu Li, Ruiming Wang, Jing Su","doi":"10.1002/cbic.202400297","DOIUrl":null,"url":null,"abstract":"Cytochrome P450 (CYP450) enzymes, which are widely distributed and pivotal in various biochemical reactions, catalyze diverse processes such as hydroxylation, epoxidation, dehydrogenation, dealkylation, nitrification, and bond formation. These enzymes have been applied in drug metabolism, antibiotic production, bioremediation, and fine chemical synthesis. Recent research revealed that CYP450 catalytic kinetics deviated from the classic Michaelis–Menten model. A notable substrate inhibition phenomenon that affects the catalytic efficiency of CYP450 at high substrate concentrations was identified. However, the substrate inhibition of various reactions catalyzed by CYP450 enzymes have not been comprehensively reviewed. This review describes CYP450 substrate inhibition examples and atypical Michaelis–Menten kinetic models, and provides insight into mechanisms of these enzymes. We also reviewed 3D structure and dynamics of CYP450 with substrate binding. Outline methods for alleviating substrate inhibition in CYP450 and other enzymes, including traditional fermentation approaches and protein engineering modifications. The comprehensive analysis presented in this study lays the foundation for enhancing the catalytic efficiency of CYP450 by deregulating substrate inhibition.","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding Cytochrome P450 Enzyme Substrate Inhibition and Prospects for Elimination Strategies\",\"authors\":\"Yisang Zhang, Guobin Zhang, Taichang Wang, Yu Chen, Junqing Wang, Piwu Li, Ruiming Wang, Jing Su\",\"doi\":\"10.1002/cbic.202400297\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cytochrome P450 (CYP450) enzymes, which are widely distributed and pivotal in various biochemical reactions, catalyze diverse processes such as hydroxylation, epoxidation, dehydrogenation, dealkylation, nitrification, and bond formation. These enzymes have been applied in drug metabolism, antibiotic production, bioremediation, and fine chemical synthesis. Recent research revealed that CYP450 catalytic kinetics deviated from the classic Michaelis–Menten model. A notable substrate inhibition phenomenon that affects the catalytic efficiency of CYP450 at high substrate concentrations was identified. However, the substrate inhibition of various reactions catalyzed by CYP450 enzymes have not been comprehensively reviewed. This review describes CYP450 substrate inhibition examples and atypical Michaelis–Menten kinetic models, and provides insight into mechanisms of these enzymes. We also reviewed 3D structure and dynamics of CYP450 with substrate binding. Outline methods for alleviating substrate inhibition in CYP450 and other enzymes, including traditional fermentation approaches and protein engineering modifications. The comprehensive analysis presented in this study lays the foundation for enhancing the catalytic efficiency of CYP450 by deregulating substrate inhibition.\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202400297\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400297","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞色素 P450(CYP450)酶分布广泛,在各种生化反应中起着关键作用,可催化羟化、环氧化、脱氢、脱烷基、硝化和键形成等多种过程。这些酶已被应用于药物代谢、抗生素生产、生物修复和精细化学品合成。最近的研究发现,CYP450 催化动力学偏离了经典的 Michaelis-Menten 模型。研究发现,在底物浓度较高的情况下,一个显著的底物抑制现象会影响 CYP450 的催化效率。然而,CYP450 酶催化的各种反应的底物抑制尚未得到全面综述。本综述介绍了 CYP450 底物抑制实例和非典型 Michaelis-Menten 动力学模型,并对这些酶的作用机制进行了深入探讨。我们还回顾了 CYP450 与底物结合的三维结构和动力学。概述减轻 CYP450 和其他酶底物抑制的方法,包括传统的发酵方法和蛋白质工程改造。本研究提出的全面分析为通过解除底物抑制来提高 CYP450 的催化效率奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding Cytochrome P450 Enzyme Substrate Inhibition and Prospects for Elimination Strategies
Cytochrome P450 (CYP450) enzymes, which are widely distributed and pivotal in various biochemical reactions, catalyze diverse processes such as hydroxylation, epoxidation, dehydrogenation, dealkylation, nitrification, and bond formation. These enzymes have been applied in drug metabolism, antibiotic production, bioremediation, and fine chemical synthesis. Recent research revealed that CYP450 catalytic kinetics deviated from the classic Michaelis–Menten model. A notable substrate inhibition phenomenon that affects the catalytic efficiency of CYP450 at high substrate concentrations was identified. However, the substrate inhibition of various reactions catalyzed by CYP450 enzymes have not been comprehensively reviewed. This review describes CYP450 substrate inhibition examples and atypical Michaelis–Menten kinetic models, and provides insight into mechanisms of these enzymes. We also reviewed 3D structure and dynamics of CYP450 with substrate binding. Outline methods for alleviating substrate inhibition in CYP450 and other enzymes, including traditional fermentation approaches and protein engineering modifications. The comprehensive analysis presented in this study lays the foundation for enhancing the catalytic efficiency of CYP450 by deregulating substrate inhibition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
期刊最新文献
Biosensor-Guided Engineering of a Baeyer-Villiger Monooxygenase for Aliphatic Ester Production Cavity-Based Discovery of New Fatty Acid Photodecarboxylases. Optogenetic Tools for Regulating RNA Metabolism and Functions. Amyloid-like Aggregation Propensities of Metabolites - Homogentisic acid, N-Acetyl aspartic acid and Isovaleric acid. Chemical tools for probing the Ub/Ubl conjugation cascades.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1