醛基激活细菌 1-脱氧-d-木酮糖-5-磷酸合成酶的 C2α-乳硫基二磷酸脱羧作用。

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY ChemBioChem Pub Date : 2024-09-13 DOI:10.1002/cbic.202400558
Eucolona M. Toci, Ananya Majumdar, Caren L. Freel Meyers
{"title":"醛基激活细菌 1-脱氧-d-木酮糖-5-磷酸合成酶的 C2α-乳硫基二磷酸脱羧作用。","authors":"Eucolona M. Toci, Ananya Majumdar, Caren L. Freel Meyers","doi":"10.1002/cbic.202400558","DOIUrl":null,"url":null,"abstract":"1‐Deoxy‐d‐xylulose 5‐phosphate synthase (DXPS) catalyzes the thiamin diphosphate (ThDP)‐dependent formation of DXP from pyruvate (donor substrate) and d‐glyceraldehyde 3‐phosphate (d‐GAP, acceptor substrate) in bacterial central metabolism. DXPS uses a ligand‐gated mechanism in which binding of a small molecule “trigger” activates the first enzyme‐bound intermediate, C2α‐lactylThDP (LThDP), to form the reactive carbanion via LThDP decarboxylation. d‐GAP is the natural acceptor substrate for DXPS and also serves a role as a trigger to induce LThDP decarboxylation in the gated step. Additionally, we have shown that O2 and d‐glyceraldehyde (d‐GA) can induce LThDP decarboxylation. We hypothesize this ligand‐gated mechanism poises DXPS to sense and respond to cellular cues in metabolic remodeling during bacterial adaptation. Here we sought to characterize features of small molecule inducers of LThDP decarboxylation. Using a combination of CD, NMR and biochemical methods, we demonstrate that the α‐hydroxy aldehyde moiety of d‐GAP is sufficient to induce LThDP decarboxylation en route to DXP formation. A variety of aliphatic aldehydes also induce LThDP decarboxylation. The study highlights the capacity of DXPS to respond to different molecular cues, lending support to potential multifunctionality of DXPS and its metabolic regulation by this mechanism.","PeriodicalId":140,"journal":{"name":"ChemBioChem","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aldehyde‐based activation of C2α‐lactylthiamin diphosphate decarboxylation on bacterial 1‐deoxy‐d‐xylulose 5‐phosphate synthase.\",\"authors\":\"Eucolona M. Toci, Ananya Majumdar, Caren L. Freel Meyers\",\"doi\":\"10.1002/cbic.202400558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"1‐Deoxy‐d‐xylulose 5‐phosphate synthase (DXPS) catalyzes the thiamin diphosphate (ThDP)‐dependent formation of DXP from pyruvate (donor substrate) and d‐glyceraldehyde 3‐phosphate (d‐GAP, acceptor substrate) in bacterial central metabolism. DXPS uses a ligand‐gated mechanism in which binding of a small molecule “trigger” activates the first enzyme‐bound intermediate, C2α‐lactylThDP (LThDP), to form the reactive carbanion via LThDP decarboxylation. d‐GAP is the natural acceptor substrate for DXPS and also serves a role as a trigger to induce LThDP decarboxylation in the gated step. Additionally, we have shown that O2 and d‐glyceraldehyde (d‐GA) can induce LThDP decarboxylation. We hypothesize this ligand‐gated mechanism poises DXPS to sense and respond to cellular cues in metabolic remodeling during bacterial adaptation. Here we sought to characterize features of small molecule inducers of LThDP decarboxylation. Using a combination of CD, NMR and biochemical methods, we demonstrate that the α‐hydroxy aldehyde moiety of d‐GAP is sufficient to induce LThDP decarboxylation en route to DXP formation. A variety of aliphatic aldehydes also induce LThDP decarboxylation. The study highlights the capacity of DXPS to respond to different molecular cues, lending support to potential multifunctionality of DXPS and its metabolic regulation by this mechanism.\",\"PeriodicalId\":140,\"journal\":{\"name\":\"ChemBioChem\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioChem\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/cbic.202400558\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioChem","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/cbic.202400558","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

1-Deoxy-d-xylulose 5-phosphate synthase(DXPS)在细菌中心代谢过程中催化二磷酸硫胺素(ThDP)从丙酮酸(供体底物)和 3-磷酸 d-甘油醛(d-GAP,受体底物)生成 DXP。DXPS 采用配体门控机制,其中小分子 "触发器 "的结合会激活第一个酶结合中间体 C2α-lactylThDP (LTHDP),通过 LThDP 脱羧形成活性碳离子。此外,我们还发现氧气和 d-甘油醛(d-GA)可以诱导 LThDP 脱羧。我们推测这种配体门控机制使 DXPS 能够感知并响应细菌适应过程中代谢重塑的细胞线索。在这里,我们试图描述小分子 LThDP 脱羧诱导剂的特征。通过结合使用 CD、NMR 和生化方法,我们证明了 d-GAP 的 α- 羟醛分子足以诱导 LThDP 在 DXP 形成过程中脱羧。各种脂肪醛也能诱导 LThDP 发生脱羧反应。这项研究强调了 DXPS 对不同分子线索的反应能力,从而支持了 DXPS 潜在的多功能性及其通过这种机制进行的代谢调节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aldehyde‐based activation of C2α‐lactylthiamin diphosphate decarboxylation on bacterial 1‐deoxy‐d‐xylulose 5‐phosphate synthase.
1‐Deoxy‐d‐xylulose 5‐phosphate synthase (DXPS) catalyzes the thiamin diphosphate (ThDP)‐dependent formation of DXP from pyruvate (donor substrate) and d‐glyceraldehyde 3‐phosphate (d‐GAP, acceptor substrate) in bacterial central metabolism. DXPS uses a ligand‐gated mechanism in which binding of a small molecule “trigger” activates the first enzyme‐bound intermediate, C2α‐lactylThDP (LThDP), to form the reactive carbanion via LThDP decarboxylation. d‐GAP is the natural acceptor substrate for DXPS and also serves a role as a trigger to induce LThDP decarboxylation in the gated step. Additionally, we have shown that O2 and d‐glyceraldehyde (d‐GA) can induce LThDP decarboxylation. We hypothesize this ligand‐gated mechanism poises DXPS to sense and respond to cellular cues in metabolic remodeling during bacterial adaptation. Here we sought to characterize features of small molecule inducers of LThDP decarboxylation. Using a combination of CD, NMR and biochemical methods, we demonstrate that the α‐hydroxy aldehyde moiety of d‐GAP is sufficient to induce LThDP decarboxylation en route to DXP formation. A variety of aliphatic aldehydes also induce LThDP decarboxylation. The study highlights the capacity of DXPS to respond to different molecular cues, lending support to potential multifunctionality of DXPS and its metabolic regulation by this mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemBioChem
ChemBioChem 生物-生化与分子生物学
CiteScore
6.10
自引率
3.10%
发文量
407
审稿时长
1 months
期刊介绍: ChemBioChem (Impact Factor 2018: 2.641) publishes important breakthroughs across all areas at the interface of chemistry and biology, including the fields of chemical biology, bioorganic chemistry, bioinorganic chemistry, synthetic biology, biocatalysis, bionanotechnology, and biomaterials. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and supported by the Asian Chemical Editorial Society (ACES).
期刊最新文献
Biosensor-Guided Engineering of a Baeyer-Villiger Monooxygenase for Aliphatic Ester Production Cavity-Based Discovery of New Fatty Acid Photodecarboxylases. Optogenetic Tools for Regulating RNA Metabolism and Functions. Amyloid-like Aggregation Propensities of Metabolites - Homogentisic acid, N-Acetyl aspartic acid and Isovaleric acid. Chemical tools for probing the Ub/Ubl conjugation cascades.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1