通过精度增益量化二元分类中的认识不确定性

IF 2.1 4区 数学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Statistical Analysis and Data Mining Pub Date : 2024-09-18 DOI:10.1002/sam.11709
Christopher Qian, Tyler Ganter, Joshua Michalenko, Feng Liang, Jason Adams
{"title":"通过精度增益量化二元分类中的认识不确定性","authors":"Christopher Qian, Tyler Ganter, Joshua Michalenko, Feng Liang, Jason Adams","doi":"10.1002/sam.11709","DOIUrl":null,"url":null,"abstract":"Recently, a surge of interest has been given to quantifying epistemic uncertainty (EU), the reducible portion of uncertainty due to lack of data. We propose a novel EU estimator in the binary classification setting, as the posterior expected value of the empirical gain in accuracy between the current prediction and the optimal prediction. In order to validate the performance of our EU estimator, we introduce an experimental procedure where we take an existing dataset, remove a set of points, and compare the estimated EU with the observed change in accuracy. Through real and simulated data experiments, we demonstrate the effectiveness of our proposed EU estimator.","PeriodicalId":48684,"journal":{"name":"Statistical Analysis and Data Mining","volume":"43 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying Epistemic Uncertainty in Binary Classification via Accuracy Gain\",\"authors\":\"Christopher Qian, Tyler Ganter, Joshua Michalenko, Feng Liang, Jason Adams\",\"doi\":\"10.1002/sam.11709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a surge of interest has been given to quantifying epistemic uncertainty (EU), the reducible portion of uncertainty due to lack of data. We propose a novel EU estimator in the binary classification setting, as the posterior expected value of the empirical gain in accuracy between the current prediction and the optimal prediction. In order to validate the performance of our EU estimator, we introduce an experimental procedure where we take an existing dataset, remove a set of points, and compare the estimated EU with the observed change in accuracy. Through real and simulated data experiments, we demonstrate the effectiveness of our proposed EU estimator.\",\"PeriodicalId\":48684,\"journal\":{\"name\":\"Statistical Analysis and Data Mining\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11709\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/sam.11709","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

最近,人们对量化认识不确定性(EU)产生了浓厚的兴趣,认识不确定性是由于缺乏数据而产生的不确定性中可减少的部分。我们在二元分类设置中提出了一种新的 EU 估计器,即当前预测与最优预测之间准确性经验增益的后验期望值。为了验证我们的 EU 估计器的性能,我们引入了一个实验过程,即利用现有数据集,移除一组点,然后将估计的 EU 与观察到的准确率变化进行比较。通过真实和模拟数据实验,我们证明了我们提出的 EU 估计器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantifying Epistemic Uncertainty in Binary Classification via Accuracy Gain
Recently, a surge of interest has been given to quantifying epistemic uncertainty (EU), the reducible portion of uncertainty due to lack of data. We propose a novel EU estimator in the binary classification setting, as the posterior expected value of the empirical gain in accuracy between the current prediction and the optimal prediction. In order to validate the performance of our EU estimator, we introduce an experimental procedure where we take an existing dataset, remove a set of points, and compare the estimated EU with the observed change in accuracy. Through real and simulated data experiments, we demonstrate the effectiveness of our proposed EU estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Analysis and Data Mining
Statistical Analysis and Data Mining COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCEC-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.20
自引率
7.70%
发文量
43
期刊介绍: Statistical Analysis and Data Mining addresses the broad area of data analysis, including statistical approaches, machine learning, data mining, and applications. Topics include statistical and computational approaches for analyzing massive and complex datasets, novel statistical and/or machine learning methods and theory, and state-of-the-art applications with high impact. Of special interest are articles that describe innovative analytical techniques, and discuss their application to real problems, in such a way that they are accessible and beneficial to domain experts across science, engineering, and commerce. The focus of the journal is on papers which satisfy one or more of the following criteria: Solve data analysis problems associated with massive, complex datasets Develop innovative statistical approaches, machine learning algorithms, or methods integrating ideas across disciplines, e.g., statistics, computer science, electrical engineering, operation research. Formulate and solve high-impact real-world problems which challenge existing paradigms via new statistical and/or computational models Provide survey to prominent research topics.
期刊最新文献
Quantifying Epistemic Uncertainty in Binary Classification via Accuracy Gain A new logarithmic multiplicative distortion for correlation analysis Revisiting Winnow: A modified online feature selection algorithm for efficient binary classification A random forest approach for interval selection in functional regression Characterizing climate pathways using feature importance on echo state networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1