Lina Marlina, Shofuro Afifah, Shien-Kuei Liaw, Pei-Jun Lee and Hiroki Kishikawa
{"title":"利用混合波长模式分复用优化低地球轨道上 20 Gbps 的地对卫星自由空间光通信","authors":"Lina Marlina, Shofuro Afifah, Shien-Kuei Liaw, Pei-Jun Lee and Hiroki Kishikawa","doi":"10.1088/1402-4896/ad78c4","DOIUrl":null,"url":null,"abstract":"High-speed free-space optical (FSO) communication has emerged as a promising technology for low earth orbit (LEO) region in the last decade. In this paper, we simulate 20 Gbps simplex ground-to-satellite with various wavelengths and transmitter beam pointing error of 0.1 to 2.5 urad. The C-band wavelength is chosen, and a non-return-zero (NRZ) pulse generator with 16 channels hybrid wavelength-mode division multiplexing (WDM-MDM) technique employing Hermite-Gaussian (HG) modes is used to vary the pointing error. The effect of beam pointing error and receiver aperture diameter was discussed in this paper. A transmitter beam pointing error of 2.5 urad can work appropriately at distances of 1000 km and 1500 km, with a BER value of 1.41 × 10−6 and 3.56 × 10−5, respectively. Based on the receiver aperture diameter of 100 cm, it successfully achieves a BER value of 2.4 × 10−8 at the LEO region and a clear eye diagram.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing 20 Gbps of ground-to-satellite free-space optical communication in low earth orbit with hybrid wavelength-mode division multiplexing\",\"authors\":\"Lina Marlina, Shofuro Afifah, Shien-Kuei Liaw, Pei-Jun Lee and Hiroki Kishikawa\",\"doi\":\"10.1088/1402-4896/ad78c4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-speed free-space optical (FSO) communication has emerged as a promising technology for low earth orbit (LEO) region in the last decade. In this paper, we simulate 20 Gbps simplex ground-to-satellite with various wavelengths and transmitter beam pointing error of 0.1 to 2.5 urad. The C-band wavelength is chosen, and a non-return-zero (NRZ) pulse generator with 16 channels hybrid wavelength-mode division multiplexing (WDM-MDM) technique employing Hermite-Gaussian (HG) modes is used to vary the pointing error. The effect of beam pointing error and receiver aperture diameter was discussed in this paper. A transmitter beam pointing error of 2.5 urad can work appropriately at distances of 1000 km and 1500 km, with a BER value of 1.41 × 10−6 and 3.56 × 10−5, respectively. Based on the receiver aperture diameter of 100 cm, it successfully achieves a BER value of 2.4 × 10−8 at the LEO region and a clear eye diagram.\",\"PeriodicalId\":20067,\"journal\":{\"name\":\"Physica Scripta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Scripta\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1402-4896/ad78c4\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad78c4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimizing 20 Gbps of ground-to-satellite free-space optical communication in low earth orbit with hybrid wavelength-mode division multiplexing
High-speed free-space optical (FSO) communication has emerged as a promising technology for low earth orbit (LEO) region in the last decade. In this paper, we simulate 20 Gbps simplex ground-to-satellite with various wavelengths and transmitter beam pointing error of 0.1 to 2.5 urad. The C-band wavelength is chosen, and a non-return-zero (NRZ) pulse generator with 16 channels hybrid wavelength-mode division multiplexing (WDM-MDM) technique employing Hermite-Gaussian (HG) modes is used to vary the pointing error. The effect of beam pointing error and receiver aperture diameter was discussed in this paper. A transmitter beam pointing error of 2.5 urad can work appropriately at distances of 1000 km and 1500 km, with a BER value of 1.41 × 10−6 and 3.56 × 10−5, respectively. Based on the receiver aperture diameter of 100 cm, it successfully achieves a BER value of 2.4 × 10−8 at the LEO region and a clear eye diagram.
期刊介绍:
Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed:
-Atomic, molecular and optical physics-
Plasma physics-
Condensed matter physics-
Mathematical physics-
Astrophysics-
High energy physics-
Nuclear physics-
Nonlinear physics.
The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.