Bin Rong, Wei Zhao, Yi Liao, Yixiao Zhang, Yangyang Zhu, Wei Shi and Bin Wei
{"title":"使用可溶液加工的高κ无机聚合物混合电介质的低电压有机场效应晶体管","authors":"Bin Rong, Wei Zhao, Yi Liao, Yixiao Zhang, Yangyang Zhu, Wei Shi and Bin Wei","doi":"10.1088/1402-4896/ad7648","DOIUrl":null,"url":null,"abstract":"Organic field-effect transistors (OFETs) incorporating hybrid high-κ inorganic Al2O3 and polymer dielectrics, including polyvinyl alcohol (PVA), polystyrene (PS), or polymethyl methacrylate (PMMA), through solution-processing techniques were fabricated. The analyses revealed that the high surface energy and hydrophilicity property of Al2O3 and PVA, and the relatively hydrophobic property of PS surface, hindered the performance of corresponding OFETs. The Al2O3/PMMA-based OFET achieved the optimized performance, with a threshold voltage of −2.7 V, a hole carrier mobility of 0.056 cm2/Vs, and a current on/off ratio of 1.0 × 104 at a low operating voltage of −5 V. Through analyzing the characteristics of leakage current, capacitance, contact resistance, and trap density of OFETs, we found that the PMMA-engaged films possessed the optimized electrical properties. The introduction of PMMA eliminated the interfacial trapping, thereby lowering the threshold voltage and enhancing the performance of the device. The COMSOL Multiphysics simulation was conducted to confirm the physical mechanism. The strategy of utilizing Al2O3/PMMA hybrid dielectric could simultaneously ensure the low operating voltage and good performance of OFET, while guaranteeing the low leakage current by the thick PMMA.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-voltage organic field-effect transistors by using solution-processable high-κ inorganic-polymer hybrid dielectrics\",\"authors\":\"Bin Rong, Wei Zhao, Yi Liao, Yixiao Zhang, Yangyang Zhu, Wei Shi and Bin Wei\",\"doi\":\"10.1088/1402-4896/ad7648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic field-effect transistors (OFETs) incorporating hybrid high-κ inorganic Al2O3 and polymer dielectrics, including polyvinyl alcohol (PVA), polystyrene (PS), or polymethyl methacrylate (PMMA), through solution-processing techniques were fabricated. The analyses revealed that the high surface energy and hydrophilicity property of Al2O3 and PVA, and the relatively hydrophobic property of PS surface, hindered the performance of corresponding OFETs. The Al2O3/PMMA-based OFET achieved the optimized performance, with a threshold voltage of −2.7 V, a hole carrier mobility of 0.056 cm2/Vs, and a current on/off ratio of 1.0 × 104 at a low operating voltage of −5 V. Through analyzing the characteristics of leakage current, capacitance, contact resistance, and trap density of OFETs, we found that the PMMA-engaged films possessed the optimized electrical properties. The introduction of PMMA eliminated the interfacial trapping, thereby lowering the threshold voltage and enhancing the performance of the device. The COMSOL Multiphysics simulation was conducted to confirm the physical mechanism. The strategy of utilizing Al2O3/PMMA hybrid dielectric could simultaneously ensure the low operating voltage and good performance of OFET, while guaranteeing the low leakage current by the thick PMMA.\",\"PeriodicalId\":20067,\"journal\":{\"name\":\"Physica Scripta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Scripta\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1402-4896/ad7648\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad7648","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Low-voltage organic field-effect transistors by using solution-processable high-κ inorganic-polymer hybrid dielectrics
Organic field-effect transistors (OFETs) incorporating hybrid high-κ inorganic Al2O3 and polymer dielectrics, including polyvinyl alcohol (PVA), polystyrene (PS), or polymethyl methacrylate (PMMA), through solution-processing techniques were fabricated. The analyses revealed that the high surface energy and hydrophilicity property of Al2O3 and PVA, and the relatively hydrophobic property of PS surface, hindered the performance of corresponding OFETs. The Al2O3/PMMA-based OFET achieved the optimized performance, with a threshold voltage of −2.7 V, a hole carrier mobility of 0.056 cm2/Vs, and a current on/off ratio of 1.0 × 104 at a low operating voltage of −5 V. Through analyzing the characteristics of leakage current, capacitance, contact resistance, and trap density of OFETs, we found that the PMMA-engaged films possessed the optimized electrical properties. The introduction of PMMA eliminated the interfacial trapping, thereby lowering the threshold voltage and enhancing the performance of the device. The COMSOL Multiphysics simulation was conducted to confirm the physical mechanism. The strategy of utilizing Al2O3/PMMA hybrid dielectric could simultaneously ensure the low operating voltage and good performance of OFET, while guaranteeing the low leakage current by the thick PMMA.
期刊介绍:
Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed:
-Atomic, molecular and optical physics-
Plasma physics-
Condensed matter physics-
Mathematical physics-
Astrophysics-
High energy physics-
Nuclear physics-
Nonlinear physics.
The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.