边坡挡土结构土压力研究进展综述

IF 2 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Frontiers in Earth Science Pub Date : 2024-09-18 DOI:10.3389/feart.2024.1468607
Yijun Zhou, Haobin Wei
{"title":"边坡挡土结构土压力研究进展综述","authors":"Yijun Zhou, Haobin Wei","doi":"10.3389/feart.2024.1468607","DOIUrl":null,"url":null,"abstract":"The earth pressure of slope retaining structure is one of the problems that are often encountered in geotechnical engineering but have not yet been fully understood and well solved. At present, there are still a lot of problems that need to be solved. For complex conditions such as stratified soil or containing ground water, the distribution law of earth pressure and the displacement mode of retaining structure need to be further studied. This paper summarizes the existing research on earth pressure of slope retain structures. According to the research methods, it is divided into three categories: research on the theoretical calculation method of earth pressure, research on earth pressure by model test, and research on earth pressure by numerical simulation. Focused discussions are carried out respectively, and the previous research results are summarized. At present, there are still a lot of problems that need to be solved in the research of earth pressure of slope retaining structure, and the calculation formula of earth pressure and the assumed fracture surface of earth are lack of experimental verification and engineering measurement.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"5 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review on the research progress of earth pressure on slope retaining structure\",\"authors\":\"Yijun Zhou, Haobin Wei\",\"doi\":\"10.3389/feart.2024.1468607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The earth pressure of slope retaining structure is one of the problems that are often encountered in geotechnical engineering but have not yet been fully understood and well solved. At present, there are still a lot of problems that need to be solved. For complex conditions such as stratified soil or containing ground water, the distribution law of earth pressure and the displacement mode of retaining structure need to be further studied. This paper summarizes the existing research on earth pressure of slope retain structures. According to the research methods, it is divided into three categories: research on the theoretical calculation method of earth pressure, research on earth pressure by model test, and research on earth pressure by numerical simulation. Focused discussions are carried out respectively, and the previous research results are summarized. At present, there are still a lot of problems that need to be solved in the research of earth pressure of slope retaining structure, and the calculation formula of earth pressure and the assumed fracture surface of earth are lack of experimental verification and engineering measurement.\",\"PeriodicalId\":12359,\"journal\":{\"name\":\"Frontiers in Earth Science\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3389/feart.2024.1468607\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2024.1468607","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

边坡挡土结构的土压力是岩土工程中经常遇到的问题之一,但尚未得到充分认识和很好的解决。目前,仍有许多问题亟待解决。对于层状土或含地下水等复杂条件,土压力的分布规律和挡土结构的位移模式还有待进一步研究。本文总结了现有关于边坡挡土结构土压力的研究。按照研究方法分为三类:土压力理论计算方法研究、土压力模型试验研究和土压力数值模拟研究。分别进行了重点讨论,并对前人的研究成果进行了总结。目前,边坡挡土结构土压力的研究还存在很多亟待解决的问题,土压力的计算公式和假定的土体断裂面都缺乏实验验证和工程测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Review on the research progress of earth pressure on slope retaining structure
The earth pressure of slope retaining structure is one of the problems that are often encountered in geotechnical engineering but have not yet been fully understood and well solved. At present, there are still a lot of problems that need to be solved. For complex conditions such as stratified soil or containing ground water, the distribution law of earth pressure and the displacement mode of retaining structure need to be further studied. This paper summarizes the existing research on earth pressure of slope retain structures. According to the research methods, it is divided into three categories: research on the theoretical calculation method of earth pressure, research on earth pressure by model test, and research on earth pressure by numerical simulation. Focused discussions are carried out respectively, and the previous research results are summarized. At present, there are still a lot of problems that need to be solved in the research of earth pressure of slope retaining structure, and the calculation formula of earth pressure and the assumed fracture surface of earth are lack of experimental verification and engineering measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Earth Science
Frontiers in Earth Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
3.50
自引率
10.30%
发文量
2076
审稿时长
12 weeks
期刊介绍: Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet. This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet. The journal welcomes outstanding contributions in any domain of Earth Science. The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission. General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.
期刊最新文献
Study on the chain-type failure mechanism of large-scale ancient landslides Investigation on spectroscopy characteristics of different metamorphic degrees of coal-based graphite Review on the research progress of earth pressure on slope retaining structure Stress modeling for the upper and lower crust along the Anninghe, Xianshuihe, and Longmenshan Faults in southeastern Tibetan plateau Complex lava tube networks developed within the 1792–93 lava flow field on Mount Etna (Italy): insights for hazard assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1