Wissal Issaoui, Imen Hamdi Nasr, Dimitrios D. Alexakis, Wafa Bejaoui, Ismael M. Ibraheem, Ahmed Ezzine, Dhouha Ben Othman, Mohamed Hédi Inoubli
{"title":"利用垂直电探测和遥感技术确定突尼斯北部马ateur 平原的几何特征","authors":"Wissal Issaoui, Imen Hamdi Nasr, Dimitrios D. Alexakis, Wafa Bejaoui, Ismael M. Ibraheem, Ahmed Ezzine, Dhouha Ben Othman, Mohamed Hédi Inoubli","doi":"10.3390/ijgi13090333","DOIUrl":null,"url":null,"abstract":"The Mateur aquifer system in Northern Tunisia was examined using data from 19 water boreholes, 69 vertical electrical sounding (VES) stations, and a Sentinel-2 satellite image. Available boreholes and their corresponding logs were compared to define precisely the multi-layer aquifer system, including the Quaternary and Campanian aquifers of the Mateur plain. Quantitative interpretation and qualitative evaluation of VES data were conducted to define the geometry of these reservoirs. These interpretations were enhanced by remote sensing imagery processing, which enabled the identification of the Mateur plain’s superficial lineaments. Based on well log information, the lithological columns show that the Quaternary series in the Ras El Ain region contains a layer of clayey, pebbly, and gravelly limestone. Additionally, in the Oued El Tine area, a clayey lithological unit has been identified as a multi-layer aquifer. The study area, exhibiting apparent resistivity values ranging between 20 and 170 Ohm·m, appears to be rich in groundwater resources. The correlation between the lithological columns and the interpreted VES data, presented as geoelectrical cross-sections, revealed variations in depth (8–106 m), thickness (10 to 55 m), and resistivity (20–98 Ohm·m) of a coarse unit corresponding to the Mateur aquifer. Twenty-three superficial lineaments were extracted from the Sentinel-2 image. Their common superposition indicated that both of them are in a good coincidence; these could be the result of normal faults, creating an aquifer system divided into raised and sunken blocks.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"17 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric Characterization of the Mateur Plain in Northern Tunisia Using Vertical Electrical Sounding and Remote Sensing Techniques\",\"authors\":\"Wissal Issaoui, Imen Hamdi Nasr, Dimitrios D. Alexakis, Wafa Bejaoui, Ismael M. Ibraheem, Ahmed Ezzine, Dhouha Ben Othman, Mohamed Hédi Inoubli\",\"doi\":\"10.3390/ijgi13090333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Mateur aquifer system in Northern Tunisia was examined using data from 19 water boreholes, 69 vertical electrical sounding (VES) stations, and a Sentinel-2 satellite image. Available boreholes and their corresponding logs were compared to define precisely the multi-layer aquifer system, including the Quaternary and Campanian aquifers of the Mateur plain. Quantitative interpretation and qualitative evaluation of VES data were conducted to define the geometry of these reservoirs. These interpretations were enhanced by remote sensing imagery processing, which enabled the identification of the Mateur plain’s superficial lineaments. Based on well log information, the lithological columns show that the Quaternary series in the Ras El Ain region contains a layer of clayey, pebbly, and gravelly limestone. Additionally, in the Oued El Tine area, a clayey lithological unit has been identified as a multi-layer aquifer. The study area, exhibiting apparent resistivity values ranging between 20 and 170 Ohm·m, appears to be rich in groundwater resources. The correlation between the lithological columns and the interpreted VES data, presented as geoelectrical cross-sections, revealed variations in depth (8–106 m), thickness (10 to 55 m), and resistivity (20–98 Ohm·m) of a coarse unit corresponding to the Mateur aquifer. Twenty-three superficial lineaments were extracted from the Sentinel-2 image. Their common superposition indicated that both of them are in a good coincidence; these could be the result of normal faults, creating an aquifer system divided into raised and sunken blocks.\",\"PeriodicalId\":48738,\"journal\":{\"name\":\"ISPRS International Journal of Geo-Information\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS International Journal of Geo-Information\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/ijgi13090333\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13090333","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
利用来自 19 个水井、69 个垂直电测站(VES)和一张哨兵-2 卫星图像的数据,对突尼斯北部的马特尔含水层系统进行了研究。对现有钻孔及其相应的测井记录进行了比较,以精确界定多层含水层系统,包括马特尔平原的第四纪含水层和坎帕尼亚含水层。对 VES 数据进行了定量解释和定性评估,以确定这些蓄水层的几何形状。通过遥感图像处理,这些解释得到了加强,从而确定了业余平原的表层线形。根据测井资料,岩性柱显示 Ras El Ain 地区的第四系包含一层粘土质、卵石质和砾石质石灰岩。此外,在 Oued El Tine 地区,粘土岩性单元被确定为多层含水层。研究区域的表观电阻率值在 20 到 170 欧姆-米之间,似乎蕴藏着丰富的地下水资源。岩性柱与解释的 VES 数据之间的相关性(以地质断面图的形式呈现)显示了与 Mateur 含水层相对应的粗单元在深度(8-106 米)、厚度(10-55 米)和电阻率(20-98 欧姆-米)方面的变化。从哨兵-2 号图像中提取了 23 条表层线状物。它们的共同叠加表明,这两条线的重合度很高;这可能是正断层的结果,形成了一个分为隆起块和下沉块的含水层系统。
Geometric Characterization of the Mateur Plain in Northern Tunisia Using Vertical Electrical Sounding and Remote Sensing Techniques
The Mateur aquifer system in Northern Tunisia was examined using data from 19 water boreholes, 69 vertical electrical sounding (VES) stations, and a Sentinel-2 satellite image. Available boreholes and their corresponding logs were compared to define precisely the multi-layer aquifer system, including the Quaternary and Campanian aquifers of the Mateur plain. Quantitative interpretation and qualitative evaluation of VES data were conducted to define the geometry of these reservoirs. These interpretations were enhanced by remote sensing imagery processing, which enabled the identification of the Mateur plain’s superficial lineaments. Based on well log information, the lithological columns show that the Quaternary series in the Ras El Ain region contains a layer of clayey, pebbly, and gravelly limestone. Additionally, in the Oued El Tine area, a clayey lithological unit has been identified as a multi-layer aquifer. The study area, exhibiting apparent resistivity values ranging between 20 and 170 Ohm·m, appears to be rich in groundwater resources. The correlation between the lithological columns and the interpreted VES data, presented as geoelectrical cross-sections, revealed variations in depth (8–106 m), thickness (10 to 55 m), and resistivity (20–98 Ohm·m) of a coarse unit corresponding to the Mateur aquifer. Twenty-three superficial lineaments were extracted from the Sentinel-2 image. Their common superposition indicated that both of them are in a good coincidence; these could be the result of normal faults, creating an aquifer system divided into raised and sunken blocks.
期刊介绍:
ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.