通过以 m6A-YTHDF1 依赖性方式降低 ABCC2 的表达,靶向 METTL3 可增强非小细胞肺癌细胞的化疗敏感性

IF 8.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Sciences Pub Date : 2024-09-03 DOI:10.7150/ijbs.97425
Rui Zhang, Pu Chen, Yubo Wang, Zekun Zeng, Huini Yang, Mengdan Li, Xi Liu, Wei Yu, Peng Hou
{"title":"通过以 m6A-YTHDF1 依赖性方式降低 ABCC2 的表达,靶向 METTL3 可增强非小细胞肺癌细胞的化疗敏感性","authors":"Rui Zhang, Pu Chen, Yubo Wang, Zekun Zeng, Huini Yang, Mengdan Li, Xi Liu, Wei Yu, Peng Hou","doi":"10.7150/ijbs.97425","DOIUrl":null,"url":null,"abstract":"Patients with non-small cell lung cancer (NSCLC) are easily resistant to first-line chemotherapy with paclitaxel (PTX) or carboplatin (CBP). N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) methyltransferase-like 3 (METTL3) has crucial functions in m<sup>6</sup>A modification and tumorigenesis. However, its role in chemoresistance of NSCLC is still elusive. Here, we demonstrated that METTL3 inhibitor STM2457 significantly reduced the IC<sub>50</sub> values of PTX or CBP in NSCLC cells, and they showed a synergistic effect. Comparing with monotherapy, a combination of STM2457 and PTX or CBP exhibited more potent <i>in vitro</i> and <i>in vivo</i> anti-tumor efficacy. In addition, we found that ATP binding cassette subfamily C member 2 (ABCC2) was responsively elevated in cytomembrane after PTX or CBP treatment, and targeting METTL3 could reverse this effect. Mechanistically, targeting METTL3 decreased the m<sup>6</sup>A modification of <i>ABCC2</i> mRNA and accelerated its mRNA degradation. Further studies revealed that YTHDF1 could bind and stabilize the m<sup>6</sup>A-modified mRNA of <i>ABCC2</i>, while YTHDF1 knockdown promoted it mRNA degradation. These results, taken together, demonstrate that targeting METTL3 enhances the sensitivity of NSCLC cells to PTX or CBP by decreasing the cytomembrane-localized ABCC2 in an m<sup>6</sup>A-YTHDF1-dependent manner, and suggest that METTL3 may be a potential therapeutic target for acquired resistance to PTX or CBP in NSCLC.","PeriodicalId":13762,"journal":{"name":"International Journal of Biological Sciences","volume":"14 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting METTL3 enhances the chemosensitivity of non-small cell lung cancer cells by decreasing ABCC2 expression in an m6A-YTHDF1-dependent manner\",\"authors\":\"Rui Zhang, Pu Chen, Yubo Wang, Zekun Zeng, Huini Yang, Mengdan Li, Xi Liu, Wei Yu, Peng Hou\",\"doi\":\"10.7150/ijbs.97425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Patients with non-small cell lung cancer (NSCLC) are easily resistant to first-line chemotherapy with paclitaxel (PTX) or carboplatin (CBP). N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) methyltransferase-like 3 (METTL3) has crucial functions in m<sup>6</sup>A modification and tumorigenesis. However, its role in chemoresistance of NSCLC is still elusive. Here, we demonstrated that METTL3 inhibitor STM2457 significantly reduced the IC<sub>50</sub> values of PTX or CBP in NSCLC cells, and they showed a synergistic effect. Comparing with monotherapy, a combination of STM2457 and PTX or CBP exhibited more potent <i>in vitro</i> and <i>in vivo</i> anti-tumor efficacy. In addition, we found that ATP binding cassette subfamily C member 2 (ABCC2) was responsively elevated in cytomembrane after PTX or CBP treatment, and targeting METTL3 could reverse this effect. Mechanistically, targeting METTL3 decreased the m<sup>6</sup>A modification of <i>ABCC2</i> mRNA and accelerated its mRNA degradation. Further studies revealed that YTHDF1 could bind and stabilize the m<sup>6</sup>A-modified mRNA of <i>ABCC2</i>, while YTHDF1 knockdown promoted it mRNA degradation. These results, taken together, demonstrate that targeting METTL3 enhances the sensitivity of NSCLC cells to PTX or CBP by decreasing the cytomembrane-localized ABCC2 in an m<sup>6</sup>A-YTHDF1-dependent manner, and suggest that METTL3 may be a potential therapeutic target for acquired resistance to PTX or CBP in NSCLC.\",\"PeriodicalId\":13762,\"journal\":{\"name\":\"International Journal of Biological Sciences\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.7150/ijbs.97425\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.7150/ijbs.97425","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

非小细胞肺癌(NSCLC)患者很容易对紫杉醇(PTX)或卡铂(CBP)一线化疗产生耐药性。N6-甲基腺苷(m6A)甲基转移酶样3(METTL3)在m6A修饰和肿瘤发生中具有重要功能。然而,它在 NSCLC 化疗耐药性中的作用仍然难以捉摸。在这里,我们证实了METTL3抑制剂STM2457能显著降低PTX或CBP在NSCLC细胞中的IC50值,并且它们表现出协同作用。与单药治疗相比,STM2457与PTX或CBP联合治疗在体外和体内均表现出更强的抗肿瘤疗效。此外,我们还发现 PTX 或 CBP 治疗后,细胞膜中的 ATP 结合盒 C 亚家族成员 2(ABCC2)呈反应性升高,而靶向 METTL3 可以逆转这种效应。从机制上讲,靶向METTL3可减少ABCC2 mRNA的m6A修饰并加速其mRNA降解。进一步的研究发现,YTHDF1能结合并稳定ABCC2的m6A修饰mRNA,而YTHDF1的敲除能促进其mRNA降解。这些结果表明,靶向METTL3能以m6A-YTHDF1依赖的方式降低胞膜定位的ABCC2,从而增强NSCLC细胞对PTX或CBP的敏感性,并表明METTL3可能是NSCLC对PTX或CBP获得性耐药的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Targeting METTL3 enhances the chemosensitivity of non-small cell lung cancer cells by decreasing ABCC2 expression in an m6A-YTHDF1-dependent manner
Patients with non-small cell lung cancer (NSCLC) are easily resistant to first-line chemotherapy with paclitaxel (PTX) or carboplatin (CBP). N6-methyladenosine (m6A) methyltransferase-like 3 (METTL3) has crucial functions in m6A modification and tumorigenesis. However, its role in chemoresistance of NSCLC is still elusive. Here, we demonstrated that METTL3 inhibitor STM2457 significantly reduced the IC50 values of PTX or CBP in NSCLC cells, and they showed a synergistic effect. Comparing with monotherapy, a combination of STM2457 and PTX or CBP exhibited more potent in vitro and in vivo anti-tumor efficacy. In addition, we found that ATP binding cassette subfamily C member 2 (ABCC2) was responsively elevated in cytomembrane after PTX or CBP treatment, and targeting METTL3 could reverse this effect. Mechanistically, targeting METTL3 decreased the m6A modification of ABCC2 mRNA and accelerated its mRNA degradation. Further studies revealed that YTHDF1 could bind and stabilize the m6A-modified mRNA of ABCC2, while YTHDF1 knockdown promoted it mRNA degradation. These results, taken together, demonstrate that targeting METTL3 enhances the sensitivity of NSCLC cells to PTX or CBP by decreasing the cytomembrane-localized ABCC2 in an m6A-YTHDF1-dependent manner, and suggest that METTL3 may be a potential therapeutic target for acquired resistance to PTX or CBP in NSCLC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Biological Sciences
International Journal of Biological Sciences 生物-生化与分子生物学
CiteScore
16.90
自引率
1.10%
发文量
413
审稿时长
1 months
期刊介绍: The International Journal of Biological Sciences is a peer-reviewed, open-access scientific journal published by Ivyspring International Publisher. It dedicates itself to publishing original articles, reviews, and short research communications across all domains of biological sciences.
期刊最新文献
Targeting mitochondria by lipid-selenium conjugate drug results in malate/fumarate exhaustion and induces mitophagy-mediated necroptosis suppression. Mechanistic study of celastrol-mediated inhibition of proinflammatory activation of macrophages in IgA nephropathy via down-regulating ECM1. Micro(nano)plastics: an Emerging Burden for Human Health. New insights into non-small cell lung cancer bone metastasis: mechanisms and therapies. SUMOylation modification of HNRNPK at the K422 site promotes invasion in glioblastoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1