S. Calvari, G. Giudice, R. Maugeri, D. Messina, D. Morgavi, L. Miraglia, A. La Spina, L. Spampinato
{"title":"意大利埃特纳火山 1792-93 年熔岩流场内形成的复杂熔岩管网:对灾害评估的启示","authors":"S. Calvari, G. Giudice, R. Maugeri, D. Messina, D. Morgavi, L. Miraglia, A. La Spina, L. Spampinato","doi":"10.3389/feart.2024.1448187","DOIUrl":null,"url":null,"abstract":"Lava tubes are powerful heat insulators, allowing lava to practically keep the initial temperature and travel longer distances than when freely flowing on the ground surface. It is thus extremely important to recognize how, when and where these structures form within a lava flow field for hazard assessment purposes, in order to plan possible interventions should a lava flow approach inhabited areas. Often being formed within thick and complex lava flow fields, lava tubes are difficult to detect, study and explore. In this study, we analyse the 1792–93 Etna lava flow field emplaced on a steep slope (>4°) which comprises several lava tubes located at different distances from the eruptive fissure, at different levels within the lava flow field, and showing various inner morphologies, with peculiar inner features related to their maturity and eruptive history. Our aim is to verify whether it is possible to connect the underground features with features observed on the lava flow surface in order to reconstruct the extension of the tube network and unravel the genetic processes. Our results show that, in the studied lava flow field, a clear correspondence is possible between shallow tubes emplaced late during the lava flow field growth and surface textures. In addition, vertical and horizontal tube capture is very widespread, and might be the primary process for lava tube persistence and long life. Our results might be applicable to other lava tubes on Earth and other rocky planets.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"18 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex lava tube networks developed within the 1792–93 lava flow field on Mount Etna (Italy): insights for hazard assessment\",\"authors\":\"S. Calvari, G. Giudice, R. Maugeri, D. Messina, D. Morgavi, L. Miraglia, A. La Spina, L. Spampinato\",\"doi\":\"10.3389/feart.2024.1448187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lava tubes are powerful heat insulators, allowing lava to practically keep the initial temperature and travel longer distances than when freely flowing on the ground surface. It is thus extremely important to recognize how, when and where these structures form within a lava flow field for hazard assessment purposes, in order to plan possible interventions should a lava flow approach inhabited areas. Often being formed within thick and complex lava flow fields, lava tubes are difficult to detect, study and explore. In this study, we analyse the 1792–93 Etna lava flow field emplaced on a steep slope (>4°) which comprises several lava tubes located at different distances from the eruptive fissure, at different levels within the lava flow field, and showing various inner morphologies, with peculiar inner features related to their maturity and eruptive history. Our aim is to verify whether it is possible to connect the underground features with features observed on the lava flow surface in order to reconstruct the extension of the tube network and unravel the genetic processes. Our results show that, in the studied lava flow field, a clear correspondence is possible between shallow tubes emplaced late during the lava flow field growth and surface textures. In addition, vertical and horizontal tube capture is very widespread, and might be the primary process for lava tube persistence and long life. Our results might be applicable to other lava tubes on Earth and other rocky planets.\",\"PeriodicalId\":12359,\"journal\":{\"name\":\"Frontiers in Earth Science\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3389/feart.2024.1448187\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2024.1448187","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Complex lava tube networks developed within the 1792–93 lava flow field on Mount Etna (Italy): insights for hazard assessment
Lava tubes are powerful heat insulators, allowing lava to practically keep the initial temperature and travel longer distances than when freely flowing on the ground surface. It is thus extremely important to recognize how, when and where these structures form within a lava flow field for hazard assessment purposes, in order to plan possible interventions should a lava flow approach inhabited areas. Often being formed within thick and complex lava flow fields, lava tubes are difficult to detect, study and explore. In this study, we analyse the 1792–93 Etna lava flow field emplaced on a steep slope (>4°) which comprises several lava tubes located at different distances from the eruptive fissure, at different levels within the lava flow field, and showing various inner morphologies, with peculiar inner features related to their maturity and eruptive history. Our aim is to verify whether it is possible to connect the underground features with features observed on the lava flow surface in order to reconstruct the extension of the tube network and unravel the genetic processes. Our results show that, in the studied lava flow field, a clear correspondence is possible between shallow tubes emplaced late during the lava flow field growth and surface textures. In addition, vertical and horizontal tube capture is very widespread, and might be the primary process for lava tube persistence and long life. Our results might be applicable to other lava tubes on Earth and other rocky planets.
期刊介绍:
Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet.
This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet.
The journal welcomes outstanding contributions in any domain of Earth Science.
The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission.
General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.