{"title":"机器学习确定了用于早期检测慢性萎缩性胃炎患者的 5 种血清细胞因子面板。","authors":"Fangmei An,Yan Ge,Wei Ye,Lin Ji,Ke Chen,Yunfei Wang,Xiaoxue Zhang,Shengrong Dong,Yao Shen,Jiamin Zhao,Xiaojuan Gao,Simon Junankar,Robin Barry Chan,Dimitris Christodoulou,Wen Wen,Peihua Lu,Qiang Zhan","doi":"10.3233/cbm-240023","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nChronic atrophy gastritis (CAG) is a high-risk pre-cancerous lesion for gastric cancer (GC). The early and accurate detection and discrimination of CAG from benign forms of gastritis (e.g. chronic superficial gastritis, CSG) is critical for optimal management of GC. However, accurate non-invasive methods for the diagnosis of CAG are currently lacking. Cytokines cause inflammation and drive cancer transformation in GC, but their utility as a diagnostic for CAG is poorly characterized.\r\n\r\nMETHODS\r\nBlood samples were collected, and 40 cytokines were quantified using a multiplexed immunoassay from 247 patients undergoing screening via endoscopy. Patients were divided into discovery and validation sets. Each cytokine importance was ranked using the feature selection algorithm Boruta. The cytokines with the highest feature importance were selected for machine learning (ML), using the LightGBM algorithm.\r\n\r\nRESULTS\r\nFive serum cytokines (IL-10, TNF-α, Eotaxin, IP-10 and SDF-1a) that could discriminate between CAG and CSG patients were identified and used for predictive model construction. This model was robust and could identify CAG patients with high performance (AUC = 0.88, Accuracy = 0.78). This compared favorably to the conventional approach using the PGI/PGII ratio (AUC = 0.59).\r\n\r\nCONCLUSION\r\nUsing state-of-the-art ML and a blood-based immunoassay, we developed an improved non-invasive screening method for the detection of precancerous GC lesions.\r\n\r\nFUNDING\r\nSupported in part by grants from: Jiangsu Science and Technology Project (no. BK20211039); Top Talent Support Program for young and middle-aged people of Wuxi Health Committee (BJ2023008); Medical Key Discipline Program of Wuxi Health Commission (ZDXK2021010), Wuxi Science and Technology Bureau Project (no. N20201004); Scientific Research Program of Wuxi Health Commission (Z202208, J202104).","PeriodicalId":56320,"journal":{"name":"Cancer Biomarkers","volume":"40 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning identifies a 5-serum cytokine panel for the early detection of chronic atrophy gastritis patients.\",\"authors\":\"Fangmei An,Yan Ge,Wei Ye,Lin Ji,Ke Chen,Yunfei Wang,Xiaoxue Zhang,Shengrong Dong,Yao Shen,Jiamin Zhao,Xiaojuan Gao,Simon Junankar,Robin Barry Chan,Dimitris Christodoulou,Wen Wen,Peihua Lu,Qiang Zhan\",\"doi\":\"10.3233/cbm-240023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND\\r\\nChronic atrophy gastritis (CAG) is a high-risk pre-cancerous lesion for gastric cancer (GC). The early and accurate detection and discrimination of CAG from benign forms of gastritis (e.g. chronic superficial gastritis, CSG) is critical for optimal management of GC. However, accurate non-invasive methods for the diagnosis of CAG are currently lacking. Cytokines cause inflammation and drive cancer transformation in GC, but their utility as a diagnostic for CAG is poorly characterized.\\r\\n\\r\\nMETHODS\\r\\nBlood samples were collected, and 40 cytokines were quantified using a multiplexed immunoassay from 247 patients undergoing screening via endoscopy. Patients were divided into discovery and validation sets. Each cytokine importance was ranked using the feature selection algorithm Boruta. The cytokines with the highest feature importance were selected for machine learning (ML), using the LightGBM algorithm.\\r\\n\\r\\nRESULTS\\r\\nFive serum cytokines (IL-10, TNF-α, Eotaxin, IP-10 and SDF-1a) that could discriminate between CAG and CSG patients were identified and used for predictive model construction. This model was robust and could identify CAG patients with high performance (AUC = 0.88, Accuracy = 0.78). This compared favorably to the conventional approach using the PGI/PGII ratio (AUC = 0.59).\\r\\n\\r\\nCONCLUSION\\r\\nUsing state-of-the-art ML and a blood-based immunoassay, we developed an improved non-invasive screening method for the detection of precancerous GC lesions.\\r\\n\\r\\nFUNDING\\r\\nSupported in part by grants from: Jiangsu Science and Technology Project (no. BK20211039); Top Talent Support Program for young and middle-aged people of Wuxi Health Committee (BJ2023008); Medical Key Discipline Program of Wuxi Health Commission (ZDXK2021010), Wuxi Science and Technology Bureau Project (no. N20201004); Scientific Research Program of Wuxi Health Commission (Z202208, J202104).\",\"PeriodicalId\":56320,\"journal\":{\"name\":\"Cancer Biomarkers\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Biomarkers\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3233/cbm-240023\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biomarkers","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3233/cbm-240023","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Machine learning identifies a 5-serum cytokine panel for the early detection of chronic atrophy gastritis patients.
BACKGROUND
Chronic atrophy gastritis (CAG) is a high-risk pre-cancerous lesion for gastric cancer (GC). The early and accurate detection and discrimination of CAG from benign forms of gastritis (e.g. chronic superficial gastritis, CSG) is critical for optimal management of GC. However, accurate non-invasive methods for the diagnosis of CAG are currently lacking. Cytokines cause inflammation and drive cancer transformation in GC, but their utility as a diagnostic for CAG is poorly characterized.
METHODS
Blood samples were collected, and 40 cytokines were quantified using a multiplexed immunoassay from 247 patients undergoing screening via endoscopy. Patients were divided into discovery and validation sets. Each cytokine importance was ranked using the feature selection algorithm Boruta. The cytokines with the highest feature importance were selected for machine learning (ML), using the LightGBM algorithm.
RESULTS
Five serum cytokines (IL-10, TNF-α, Eotaxin, IP-10 and SDF-1a) that could discriminate between CAG and CSG patients were identified and used for predictive model construction. This model was robust and could identify CAG patients with high performance (AUC = 0.88, Accuracy = 0.78). This compared favorably to the conventional approach using the PGI/PGII ratio (AUC = 0.59).
CONCLUSION
Using state-of-the-art ML and a blood-based immunoassay, we developed an improved non-invasive screening method for the detection of precancerous GC lesions.
FUNDING
Supported in part by grants from: Jiangsu Science and Technology Project (no. BK20211039); Top Talent Support Program for young and middle-aged people of Wuxi Health Committee (BJ2023008); Medical Key Discipline Program of Wuxi Health Commission (ZDXK2021010), Wuxi Science and Technology Bureau Project (no. N20201004); Scientific Research Program of Wuxi Health Commission (Z202208, J202104).
期刊介绍:
Concentrating on molecular biomarkers in cancer research, Cancer Biomarkers publishes original research findings (and reviews solicited by the editor) on the subject of the identification of markers associated with the disease processes whether or not they are an integral part of the pathological lesion.
The disease markers may include, but are not limited to, genomic, epigenomic, proteomics, cellular and morphologic, and genetic factors predisposing to the disease or indicating the occurrence of the disease. Manuscripts on these factors or biomarkers, either in altered forms, abnormal concentrations or with abnormal tissue distribution leading to disease causation will be accepted.