Taye T Mekonnen,Yogeshwari S Ambekar,Christian Zevallos-Delgado,Achuth Nair,Fernando Zvietcovich,Hoda Zarkoob,Manmohan Singh,Yi Wei Lim,Marc Ferrer,Salavat R Aglyamov,Giuliano Scarcelli,Min Jae Song,Kirill V Larin
{"title":"双光学弹性成像技术可检测 TGF - β 诱导的皮肤支架生物力学特性变化。","authors":"Taye T Mekonnen,Yogeshwari S Ambekar,Christian Zevallos-Delgado,Achuth Nair,Fernando Zvietcovich,Hoda Zarkoob,Manmohan Singh,Yi Wei Lim,Marc Ferrer,Salavat R Aglyamov,Giuliano Scarcelli,Min Jae Song,Kirill V Larin","doi":"10.1117/1.jbo.29.9.095002","DOIUrl":null,"url":null,"abstract":"Significance\r\nThe skin's mechanical properties are tightly regulated. Various pathologies can affect skin stiffness, and understanding these changes is a focus in tissue engineering. Ex vivo skin scaffolds are a robust platform for evaluating the effects of various genetic and molecular interactions on the skin. Transforming growth factor-beta ( TGF - β ) is a critical signaling molecule in the skin that can regulate the amount of collagen and elastin in the skin and, consequently, its mechanical properties.\r\n\r\nAim\r\nThis study investigates the biomechanical properties of bio-engineered skin scaffolds, focusing on the influence of TGF - β , a signaling molecule with diverse cellular functions.\r\n\r\nApproach\r\nThe TGF - β receptor I inhibitor, galunisertib, was employed to assess the mechanical changes resulting from dysregulation of TGF - β . Skin scaffold samples, grouped into three categories (control, TGF - β -treated, and TGF - β + galunisertib-treated), were prepared in two distinct culture media-one with aprotinin (AP) and another without. Two optical elastography techniques, namely wave-based optical coherence elastography (OCE) and Brillouin microscopy, were utilized to quantify the biomechanical properties of the tissues.\r\n\r\nResults\r\nResults showed significantly higher wave speed (with AP, p < 0.001 ; without AP, p < 0.001 ) and Brillouin frequency shift (with AP, p < 0.001 ; without AP, p = 0.01 ) in TGF - β -treated group compared with the control group. The difference in wave speed between the control and TGF - β + galunisertib with ( p = 0.10 ) and without AP ( p = 0.36 ) was not significant. Moreover, the TGF - β + galunisertib-treated group exhibited lower wave speed without and with AP and reduced Brillouin frequency shift than the TGF - β -treated group without AP, further strengthening the potential role of TGF - β in regulating the mechanical properties of the samples.\r\n\r\nConclusions\r\nThese findings offer valuable insights into TGF - β -induced biomechanical alterations in bio-engineered skin scaffolds, highlighting the potential of OCE and Brillouin microscopy in the development of targeted therapies in conditions involving abnormal tissue remodeling and fibrosis.","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"9 1","pages":"095002"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual optical elastography detects TGF - β -induced alterations in the biomechanical properties of skin scaffolds.\",\"authors\":\"Taye T Mekonnen,Yogeshwari S Ambekar,Christian Zevallos-Delgado,Achuth Nair,Fernando Zvietcovich,Hoda Zarkoob,Manmohan Singh,Yi Wei Lim,Marc Ferrer,Salavat R Aglyamov,Giuliano Scarcelli,Min Jae Song,Kirill V Larin\",\"doi\":\"10.1117/1.jbo.29.9.095002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Significance\\r\\nThe skin's mechanical properties are tightly regulated. Various pathologies can affect skin stiffness, and understanding these changes is a focus in tissue engineering. Ex vivo skin scaffolds are a robust platform for evaluating the effects of various genetic and molecular interactions on the skin. Transforming growth factor-beta ( TGF - β ) is a critical signaling molecule in the skin that can regulate the amount of collagen and elastin in the skin and, consequently, its mechanical properties.\\r\\n\\r\\nAim\\r\\nThis study investigates the biomechanical properties of bio-engineered skin scaffolds, focusing on the influence of TGF - β , a signaling molecule with diverse cellular functions.\\r\\n\\r\\nApproach\\r\\nThe TGF - β receptor I inhibitor, galunisertib, was employed to assess the mechanical changes resulting from dysregulation of TGF - β . Skin scaffold samples, grouped into three categories (control, TGF - β -treated, and TGF - β + galunisertib-treated), were prepared in two distinct culture media-one with aprotinin (AP) and another without. Two optical elastography techniques, namely wave-based optical coherence elastography (OCE) and Brillouin microscopy, were utilized to quantify the biomechanical properties of the tissues.\\r\\n\\r\\nResults\\r\\nResults showed significantly higher wave speed (with AP, p < 0.001 ; without AP, p < 0.001 ) and Brillouin frequency shift (with AP, p < 0.001 ; without AP, p = 0.01 ) in TGF - β -treated group compared with the control group. The difference in wave speed between the control and TGF - β + galunisertib with ( p = 0.10 ) and without AP ( p = 0.36 ) was not significant. Moreover, the TGF - β + galunisertib-treated group exhibited lower wave speed without and with AP and reduced Brillouin frequency shift than the TGF - β -treated group without AP, further strengthening the potential role of TGF - β in regulating the mechanical properties of the samples.\\r\\n\\r\\nConclusions\\r\\nThese findings offer valuable insights into TGF - β -induced biomechanical alterations in bio-engineered skin scaffolds, highlighting the potential of OCE and Brillouin microscopy in the development of targeted therapies in conditions involving abnormal tissue remodeling and fibrosis.\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"9 1\",\"pages\":\"095002\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jbo.29.9.095002\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.jbo.29.9.095002","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Dual optical elastography detects TGF - β -induced alterations in the biomechanical properties of skin scaffolds.
Significance
The skin's mechanical properties are tightly regulated. Various pathologies can affect skin stiffness, and understanding these changes is a focus in tissue engineering. Ex vivo skin scaffolds are a robust platform for evaluating the effects of various genetic and molecular interactions on the skin. Transforming growth factor-beta ( TGF - β ) is a critical signaling molecule in the skin that can regulate the amount of collagen and elastin in the skin and, consequently, its mechanical properties.
Aim
This study investigates the biomechanical properties of bio-engineered skin scaffolds, focusing on the influence of TGF - β , a signaling molecule with diverse cellular functions.
Approach
The TGF - β receptor I inhibitor, galunisertib, was employed to assess the mechanical changes resulting from dysregulation of TGF - β . Skin scaffold samples, grouped into three categories (control, TGF - β -treated, and TGF - β + galunisertib-treated), were prepared in two distinct culture media-one with aprotinin (AP) and another without. Two optical elastography techniques, namely wave-based optical coherence elastography (OCE) and Brillouin microscopy, were utilized to quantify the biomechanical properties of the tissues.
Results
Results showed significantly higher wave speed (with AP, p < 0.001 ; without AP, p < 0.001 ) and Brillouin frequency shift (with AP, p < 0.001 ; without AP, p = 0.01 ) in TGF - β -treated group compared with the control group. The difference in wave speed between the control and TGF - β + galunisertib with ( p = 0.10 ) and without AP ( p = 0.36 ) was not significant. Moreover, the TGF - β + galunisertib-treated group exhibited lower wave speed without and with AP and reduced Brillouin frequency shift than the TGF - β -treated group without AP, further strengthening the potential role of TGF - β in regulating the mechanical properties of the samples.
Conclusions
These findings offer valuable insights into TGF - β -induced biomechanical alterations in bio-engineered skin scaffolds, highlighting the potential of OCE and Brillouin microscopy in the development of targeted therapies in conditions involving abnormal tissue remodeling and fibrosis.
期刊介绍:
The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.