{"title":"探索植物化学化合物:抑制 HIV-1 逆转录酶的计算研究","authors":"Jyotsna Bandi, Madhan Chunduru, Satya Tulasi Mangamuri, Anand Kumar Nelapati, Jalaja Naravula, Viswajit Mulpuru","doi":"10.2174/0115701646316517240901091407","DOIUrl":null,"url":null,"abstract":"Background: HIV-1 is the most virulent type, causing most AIDS cases worldwide. Therapeutics like NRTIs and NNRTIs terminate replication by terminating polymerization reactions. Natural-based therapeutics are increasingly being used to reduce side effects and combat disease. Method: The study focuses on identifying phytochemical compounds that effectively inhibit the HIV-1 reverse transcriptase process using molecular docking and molecular dynamic simulations. Result: Molecular docking results show anisomelolide has a significantly stronger binding affinity (-29.9992KJ/mol) compared to nevirapine (-13.34696 KJ/mol), forming more hydrogen bonds and hydrophilic interactions, indicating a more stable and specific binding. MD simulations further support these findings, with anisomelolide exhibiting lower RMSD and RMSF values, suggesting greater structural stability and lower flexibility. Interaction energy analysis reveals robust binding and stability for anisomelolide over time. Additionally, hydrogen bond analysis indicates more frequent and stronger interactions for anisomelolide. Conclusion: The phytochemical compound anisomelolide exhibits superior binding affinity, structural stability, and interaction dynamics, making it a promising candidate for drug development against HIV-1 RT.","PeriodicalId":50601,"journal":{"name":"Current Proteomics","volume":"203 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Phytochemical Compounds: A Computational Study for HIV-1 Reverse Transcriptase Inhibition\",\"authors\":\"Jyotsna Bandi, Madhan Chunduru, Satya Tulasi Mangamuri, Anand Kumar Nelapati, Jalaja Naravula, Viswajit Mulpuru\",\"doi\":\"10.2174/0115701646316517240901091407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: HIV-1 is the most virulent type, causing most AIDS cases worldwide. Therapeutics like NRTIs and NNRTIs terminate replication by terminating polymerization reactions. Natural-based therapeutics are increasingly being used to reduce side effects and combat disease. Method: The study focuses on identifying phytochemical compounds that effectively inhibit the HIV-1 reverse transcriptase process using molecular docking and molecular dynamic simulations. Result: Molecular docking results show anisomelolide has a significantly stronger binding affinity (-29.9992KJ/mol) compared to nevirapine (-13.34696 KJ/mol), forming more hydrogen bonds and hydrophilic interactions, indicating a more stable and specific binding. MD simulations further support these findings, with anisomelolide exhibiting lower RMSD and RMSF values, suggesting greater structural stability and lower flexibility. Interaction energy analysis reveals robust binding and stability for anisomelolide over time. Additionally, hydrogen bond analysis indicates more frequent and stronger interactions for anisomelolide. Conclusion: The phytochemical compound anisomelolide exhibits superior binding affinity, structural stability, and interaction dynamics, making it a promising candidate for drug development against HIV-1 RT.\",\"PeriodicalId\":50601,\"journal\":{\"name\":\"Current Proteomics\",\"volume\":\"203 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0115701646316517240901091407\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0115701646316517240901091407","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Exploring Phytochemical Compounds: A Computational Study for HIV-1 Reverse Transcriptase Inhibition
Background: HIV-1 is the most virulent type, causing most AIDS cases worldwide. Therapeutics like NRTIs and NNRTIs terminate replication by terminating polymerization reactions. Natural-based therapeutics are increasingly being used to reduce side effects and combat disease. Method: The study focuses on identifying phytochemical compounds that effectively inhibit the HIV-1 reverse transcriptase process using molecular docking and molecular dynamic simulations. Result: Molecular docking results show anisomelolide has a significantly stronger binding affinity (-29.9992KJ/mol) compared to nevirapine (-13.34696 KJ/mol), forming more hydrogen bonds and hydrophilic interactions, indicating a more stable and specific binding. MD simulations further support these findings, with anisomelolide exhibiting lower RMSD and RMSF values, suggesting greater structural stability and lower flexibility. Interaction energy analysis reveals robust binding and stability for anisomelolide over time. Additionally, hydrogen bond analysis indicates more frequent and stronger interactions for anisomelolide. Conclusion: The phytochemical compound anisomelolide exhibits superior binding affinity, structural stability, and interaction dynamics, making it a promising candidate for drug development against HIV-1 RT.
Current ProteomicsBIOCHEMICAL RESEARCH METHODS-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.60
自引率
0.00%
发文量
25
审稿时长
>0 weeks
期刊介绍:
Research in the emerging field of proteomics is growing at an extremely rapid rate. The principal aim of Current Proteomics is to publish well-timed in-depth/mini review articles in this fast-expanding area on topics relevant and significant to the development of proteomics. Current Proteomics is an essential journal for everyone involved in proteomics and related fields in both academia and industry.
Current Proteomics publishes in-depth/mini review articles in all aspects of the fast-expanding field of proteomics. All areas of proteomics are covered together with the methodology, software, databases, technological advances and applications of proteomics, including functional proteomics. Diverse technologies covered include but are not limited to:
Protein separation and characterization techniques
2-D gel electrophoresis and image analysis
Techniques for protein expression profiling including mass spectrometry-based methods and algorithms for correlative database searching
Determination of co-translational and post- translational modification of proteins
Protein/peptide microarrays
Biomolecular interaction analysis
Analysis of protein complexes
Yeast two-hybrid projects
Protein-protein interaction (protein interactome) pathways and cell signaling networks
Systems biology
Proteome informatics (bioinformatics)
Knowledge integration and management tools
High-throughput protein structural studies (using mass spectrometry, nuclear magnetic resonance and X-ray crystallography)
High-throughput computational methods for protein 3-D structure as well as function determination
Robotics, nanotechnology, and microfluidics.