对甲苯磺酸型深共晶溶剂促进苯甲酸甲酯的合成

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Reaction Chemistry & Engineering Pub Date : 2024-09-16 DOI:10.1039/D4RE00352G
Dian Jin, Xindi Feng, Li Sun, Zuoxiang Zeng and Zhen Liu
{"title":"对甲苯磺酸型深共晶溶剂促进苯甲酸甲酯的合成","authors":"Dian Jin, Xindi Feng, Li Sun, Zuoxiang Zeng and Zhen Liu","doi":"10.1039/D4RE00352G","DOIUrl":null,"url":null,"abstract":"<p >Methyl benzoate (MB) is a chemical raw material used in various fields. However, the conventional approach to synthesizing MB is characterized by difficulties such as equipment corrosion, by-product generation, and recycling challenges. In light of these challenges, this work proposes the utilization of deep eutectic solvents (DESs) as both extractants and catalysts in a reactive extraction process. In particular, <em>p</em>-toluenesulfonic acid-based deep eutectic solvents (PTSA-based DESs) were tested as potential candidates, with choline chloride (ChCl) and imidazole (Im) chosen as hydrogen bonding acceptors (HBAs). The feasibility of DESs consisting of ChCl and PTSA was assessed using the COSMO-RS theory. The optimal process conditions were determined. Under the optimal conditions, the yield of MB reached 93.46%, and the performance of [ChCl–PTSA] remained stable after five cycles. We also used the group contribution method and COSMO-RS to derive separate kinetic models, with activation energies of 43.71 kJ mol<small><sup>−1</sup></small> and 38.71 kJ mol<small><sup>−1</sup></small>. Our work highlights the potential of [ChCl : PTSA] in the industrial production of MB.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 12","pages":" 3179-3190"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of methyl benzoate intensified by p-toluenesulfonic acid-based deep eutectic solvents†\",\"authors\":\"Dian Jin, Xindi Feng, Li Sun, Zuoxiang Zeng and Zhen Liu\",\"doi\":\"10.1039/D4RE00352G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Methyl benzoate (MB) is a chemical raw material used in various fields. However, the conventional approach to synthesizing MB is characterized by difficulties such as equipment corrosion, by-product generation, and recycling challenges. In light of these challenges, this work proposes the utilization of deep eutectic solvents (DESs) as both extractants and catalysts in a reactive extraction process. In particular, <em>p</em>-toluenesulfonic acid-based deep eutectic solvents (PTSA-based DESs) were tested as potential candidates, with choline chloride (ChCl) and imidazole (Im) chosen as hydrogen bonding acceptors (HBAs). The feasibility of DESs consisting of ChCl and PTSA was assessed using the COSMO-RS theory. The optimal process conditions were determined. Under the optimal conditions, the yield of MB reached 93.46%, and the performance of [ChCl–PTSA] remained stable after five cycles. We also used the group contribution method and COSMO-RS to derive separate kinetic models, with activation energies of 43.71 kJ mol<small><sup>−1</sup></small> and 38.71 kJ mol<small><sup>−1</sup></small>. Our work highlights the potential of [ChCl : PTSA] in the industrial production of MB.</p>\",\"PeriodicalId\":101,\"journal\":{\"name\":\"Reaction Chemistry & Engineering\",\"volume\":\" 12\",\"pages\":\" 3179-3190\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reaction Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00352g\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d4re00352g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

苯甲酸甲酯(MB)是一种化学原料,广泛应用于各个领域。然而,合成苯甲酸甲酯的传统方法存在设备腐蚀、副产品生成和回收等难题。有鉴于此,本研究提出利用深共晶溶剂(DES)作为反应萃取工艺中的萃取剂和催化剂。其中,对甲苯磺酸基深共晶溶剂(PTSA-based DESs)作为潜在候选物质进行了测试,氯化胆碱(ChCl)和咪唑(Im)被选为氢键接受体(HBAs)。使用 COSMO-RS 理论评估了由 ChCl 和 PTSA 组成的 DES 的可行性。确定了最佳工艺条件。在最佳条件下,MB 的产率达到 93.46%,[ChCl-PTSA]的性能在五个循环后保持稳定。我们还利用群贡献法和 COSMO-RS 分别推导出了活化能为 43.71 kJ mol-1 和 38.71 kJ mol-1 的动力学模型。我们的工作凸显了 [ChCl : PTSA] 在甲基溴工业生产中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of methyl benzoate intensified by p-toluenesulfonic acid-based deep eutectic solvents†

Methyl benzoate (MB) is a chemical raw material used in various fields. However, the conventional approach to synthesizing MB is characterized by difficulties such as equipment corrosion, by-product generation, and recycling challenges. In light of these challenges, this work proposes the utilization of deep eutectic solvents (DESs) as both extractants and catalysts in a reactive extraction process. In particular, p-toluenesulfonic acid-based deep eutectic solvents (PTSA-based DESs) were tested as potential candidates, with choline chloride (ChCl) and imidazole (Im) chosen as hydrogen bonding acceptors (HBAs). The feasibility of DESs consisting of ChCl and PTSA was assessed using the COSMO-RS theory. The optimal process conditions were determined. Under the optimal conditions, the yield of MB reached 93.46%, and the performance of [ChCl–PTSA] remained stable after five cycles. We also used the group contribution method and COSMO-RS to derive separate kinetic models, with activation energies of 43.71 kJ mol−1 and 38.71 kJ mol−1. Our work highlights the potential of [ChCl : PTSA] in the industrial production of MB.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
期刊最新文献
Back cover Interaction of light with gas-liquid interfaces: influence on photon absorption in continuous-flow photoreactors. Efficient and convenient synthesis of methyl (S)-5-chloro-2-hydroxy-1-oxo-2,3-dihydro-1H-indene-2-carboxylate: a key intermediate for (S)-indoxacarb using aqueous TBHP as oxidant† Correction: Combination of near-infrared spectroscopy and a transient flow method for efficient kinetic analysis of the Claisen rearrangement Nanostructural investigation of orthogonally stacked mesoporous silica films and their reactivity with phosphate buffer†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1