Carola Kuhn, Marco Kirn, Steffen Tischer, Olaf Deutschmann
{"title":"作为能量载体的微米级铁颗粒:固定床反应器中的循环实验","authors":"Carola Kuhn, Marco Kirn, Steffen Tischer, Olaf Deutschmann","doi":"10.1016/j.proci.2024.105207","DOIUrl":null,"url":null,"abstract":"Iron is a promising energy carrier with the potential to store substantial amounts of energy over extended time periods with minimal losses. For instance, the energy from green hydrogen sources can be used to reduce iron oxides, be stored or transported, and thus be regained by exothermic oxidation of the iron. This work explores the influence of oxygen partial pressure and temperature on the oxidation process in a fixed-bed reactor. Furthermore, the analysis extends to the reduction of oxidized iron particles at varying temperatures. The experimental findings highlight that both oxidation and reduction progress through the fixed-bed reactor as distinct reaction fronts. In the oxidation process, the speed of the reaction front increases with rising oxygen content and temperature, resulting in a higher reaction rate and a correspondingly increased heat release. Conversely, the reaction rate for reduction experiences a notable decrease for 600°C and 700°C. The reprocessability of the iron powder was validated for up to 16 cycles under the optimal reaction conditions established. Furthermore, it was demonstrated that the performance improves with an increasing number of cycles. This improvement is attributed to the formation of pores due to density changes and the subsequent creation of a larger surface area, mitigating the negative effects of sintering and agglomeration.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"43 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micron-sized iron particles as energy carrier: Cycling experiments in a fixed-bed reactor\",\"authors\":\"Carola Kuhn, Marco Kirn, Steffen Tischer, Olaf Deutschmann\",\"doi\":\"10.1016/j.proci.2024.105207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Iron is a promising energy carrier with the potential to store substantial amounts of energy over extended time periods with minimal losses. For instance, the energy from green hydrogen sources can be used to reduce iron oxides, be stored or transported, and thus be regained by exothermic oxidation of the iron. This work explores the influence of oxygen partial pressure and temperature on the oxidation process in a fixed-bed reactor. Furthermore, the analysis extends to the reduction of oxidized iron particles at varying temperatures. The experimental findings highlight that both oxidation and reduction progress through the fixed-bed reactor as distinct reaction fronts. In the oxidation process, the speed of the reaction front increases with rising oxygen content and temperature, resulting in a higher reaction rate and a correspondingly increased heat release. Conversely, the reaction rate for reduction experiences a notable decrease for 600°C and 700°C. The reprocessability of the iron powder was validated for up to 16 cycles under the optimal reaction conditions established. Furthermore, it was demonstrated that the performance improves with an increasing number of cycles. This improvement is attributed to the formation of pores due to density changes and the subsequent creation of a larger surface area, mitigating the negative effects of sintering and agglomeration.\",\"PeriodicalId\":408,\"journal\":{\"name\":\"Proceedings of the Combustion Institute\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Combustion Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.proci.2024.105207\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105207","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Micron-sized iron particles as energy carrier: Cycling experiments in a fixed-bed reactor
Iron is a promising energy carrier with the potential to store substantial amounts of energy over extended time periods with minimal losses. For instance, the energy from green hydrogen sources can be used to reduce iron oxides, be stored or transported, and thus be regained by exothermic oxidation of the iron. This work explores the influence of oxygen partial pressure and temperature on the oxidation process in a fixed-bed reactor. Furthermore, the analysis extends to the reduction of oxidized iron particles at varying temperatures. The experimental findings highlight that both oxidation and reduction progress through the fixed-bed reactor as distinct reaction fronts. In the oxidation process, the speed of the reaction front increases with rising oxygen content and temperature, resulting in a higher reaction rate and a correspondingly increased heat release. Conversely, the reaction rate for reduction experiences a notable decrease for 600°C and 700°C. The reprocessability of the iron powder was validated for up to 16 cycles under the optimal reaction conditions established. Furthermore, it was demonstrated that the performance improves with an increasing number of cycles. This improvement is attributed to the formation of pores due to density changes and the subsequent creation of a larger surface area, mitigating the negative effects of sintering and agglomeration.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.