Wei Jia, Hailong Li, Redha Ali, Krishna P. Shanbhogue, William R. Masch, Anum Aslam, David T. Harris, Scott B. Reeder, Jonathan R. Dillman, Lili He
{"title":"从多中心腹部磁共振成像数据中研究 ComBat 对放射组学和深度特征的协调性","authors":"Wei Jia, Hailong Li, Redha Ali, Krishna P. Shanbhogue, William R. Masch, Anum Aslam, David T. Harris, Scott B. Reeder, Jonathan R. Dillman, Lili He","doi":"10.1007/s10278-024-01253-0","DOIUrl":null,"url":null,"abstract":"<p>ComBat harmonization has been developed to remove non-biological variations for data in multi-center research applying artificial intelligence (AI). We investigated the effectiveness of ComBat harmonization on radiomic and deep features extracted from large, multi-center abdominal MRI data. A retrospective study was conducted on T2-weighted (T2W) abdominal MRI data retrieved from individual patients with suspected or known chronic liver disease at three study sites. MRI data were acquired using systems from three manufacturers and two field strengths. Radiomic features and deep features were extracted using the PyRadiomics pipeline and a Swin Transformer. ComBat was used to harmonize radiomic and deep features across different manufacturers and field strengths. Student’s <i>t</i>-test, ANOVA test, and Cohen’s F score were applied to assess the difference in individual features before and after ComBat harmonization. Between two field strengths, 76.7%, 52.9%, and 26.7% of radiomic features, and 89.0%, 56.5%, and 0.1% of deep features from three manufacturers were significantly different. Among the three manufacturers, 90.1% and 75.0% of radiomic features and 89.3% and 84.1% of deep features from two field strengths were significantly different. After ComBat harmonization, there were no significant differences in radiomic and deep features among manufacturers or field strengths based on <i>t-</i>tests or ANOVA tests. Reduced Cohen’s F scores were consistently observed after ComBat harmonization. ComBat harmonization effectively harmonizes radiomic and deep features by removing the non-biological variations due to system manufacturers and/or field strengths in large multi-center clinical abdominal MRI datasets.</p>","PeriodicalId":50214,"journal":{"name":"Journal of Digital Imaging","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of ComBat Harmonization on Radiomic and Deep Features from Multi-Center Abdominal MRI Data\",\"authors\":\"Wei Jia, Hailong Li, Redha Ali, Krishna P. Shanbhogue, William R. Masch, Anum Aslam, David T. Harris, Scott B. Reeder, Jonathan R. Dillman, Lili He\",\"doi\":\"10.1007/s10278-024-01253-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>ComBat harmonization has been developed to remove non-biological variations for data in multi-center research applying artificial intelligence (AI). We investigated the effectiveness of ComBat harmonization on radiomic and deep features extracted from large, multi-center abdominal MRI data. A retrospective study was conducted on T2-weighted (T2W) abdominal MRI data retrieved from individual patients with suspected or known chronic liver disease at three study sites. MRI data were acquired using systems from three manufacturers and two field strengths. Radiomic features and deep features were extracted using the PyRadiomics pipeline and a Swin Transformer. ComBat was used to harmonize radiomic and deep features across different manufacturers and field strengths. Student’s <i>t</i>-test, ANOVA test, and Cohen’s F score were applied to assess the difference in individual features before and after ComBat harmonization. Between two field strengths, 76.7%, 52.9%, and 26.7% of radiomic features, and 89.0%, 56.5%, and 0.1% of deep features from three manufacturers were significantly different. Among the three manufacturers, 90.1% and 75.0% of radiomic features and 89.3% and 84.1% of deep features from two field strengths were significantly different. After ComBat harmonization, there were no significant differences in radiomic and deep features among manufacturers or field strengths based on <i>t-</i>tests or ANOVA tests. Reduced Cohen’s F scores were consistently observed after ComBat harmonization. ComBat harmonization effectively harmonizes radiomic and deep features by removing the non-biological variations due to system manufacturers and/or field strengths in large multi-center clinical abdominal MRI datasets.</p>\",\"PeriodicalId\":50214,\"journal\":{\"name\":\"Journal of Digital Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Digital Imaging\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-024-01253-0\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Digital Imaging","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10278-024-01253-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Investigation of ComBat Harmonization on Radiomic and Deep Features from Multi-Center Abdominal MRI Data
ComBat harmonization has been developed to remove non-biological variations for data in multi-center research applying artificial intelligence (AI). We investigated the effectiveness of ComBat harmonization on radiomic and deep features extracted from large, multi-center abdominal MRI data. A retrospective study was conducted on T2-weighted (T2W) abdominal MRI data retrieved from individual patients with suspected or known chronic liver disease at three study sites. MRI data were acquired using systems from three manufacturers and two field strengths. Radiomic features and deep features were extracted using the PyRadiomics pipeline and a Swin Transformer. ComBat was used to harmonize radiomic and deep features across different manufacturers and field strengths. Student’s t-test, ANOVA test, and Cohen’s F score were applied to assess the difference in individual features before and after ComBat harmonization. Between two field strengths, 76.7%, 52.9%, and 26.7% of radiomic features, and 89.0%, 56.5%, and 0.1% of deep features from three manufacturers were significantly different. Among the three manufacturers, 90.1% and 75.0% of radiomic features and 89.3% and 84.1% of deep features from two field strengths were significantly different. After ComBat harmonization, there were no significant differences in radiomic and deep features among manufacturers or field strengths based on t-tests or ANOVA tests. Reduced Cohen’s F scores were consistently observed after ComBat harmonization. ComBat harmonization effectively harmonizes radiomic and deep features by removing the non-biological variations due to system manufacturers and/or field strengths in large multi-center clinical abdominal MRI datasets.
期刊介绍:
The Journal of Digital Imaging (JDI) is the official peer-reviewed journal of the Society for Imaging Informatics in Medicine (SIIM). JDI’s goal is to enhance the exchange of knowledge encompassed by the general topic of Imaging Informatics in Medicine such as research and practice in clinical, engineering, and information technologies and techniques in all medical imaging environments. JDI topics are of interest to researchers, developers, educators, physicians, and imaging informatics professionals.
Suggested Topics
PACS and component systems; imaging informatics for the enterprise; image-enabled electronic medical records; RIS and HIS; digital image acquisition; image processing; image data compression; 3D, visualization, and multimedia; speech recognition; computer-aided diagnosis; facilities design; imaging vocabularies and ontologies; Transforming the Radiological Interpretation Process (TRIP™); DICOM and other standards; workflow and process modeling and simulation; quality assurance; archive integrity and security; teleradiology; digital mammography; and radiological informatics education.