Norah Ger, Alice Ku, Jasmyn Lopez, N. Robert Bennett, Jia Wang, Grace Ateka, Enoch Anyenda, Matthias Rosezky, Adam S. Wang, Kian Shaker
{"title":"OpenDosimeter:开放式硬件个人 X 射线剂量计","authors":"Norah Ger, Alice Ku, Jasmyn Lopez, N. Robert Bennett, Jia Wang, Grace Ateka, Enoch Anyenda, Matthias Rosezky, Adam S. Wang, Kian Shaker","doi":"arxiv-2409.09993","DOIUrl":null,"url":null,"abstract":"We present OpenDosimeter (https://opendosimeter.org/), an open hardware\nsolution for real-time personal X-ray dose monitoring based on a scintillation\ncounter. Using an X-ray sensor assembly (LYSO + SiPM) on a custom board powered\nby a Raspberry Pi Pico, OpenDosimeter provides real-time feedback (1 Hz), data\nlogging (10 hours), and battery-powered operation. One of the core innovations\nis that we calibrate the device using $^{241}$Am found in ionization smoke\ndetectors. Specifically, we use the $\\gamma$-emissions to spectrally calibrate\nthe dosimeter, then calculate the effective dose from X-ray exposure by\ncompensating for the scintillator absorption efficiency and applying\nenergy-to-dose coefficients derived from tabulated data in the ICRP 116\npublication. We demonstrate that this transparent approach enables real-time\ndose rate readings with a linear response between 0.1-1000 $\\mu$Sv/h at\n$\\pm$25% accuracy, tested for energies up to 120 keV. The maximum dose rate\nreadings are limited by pile-up effects when approaching count rate saturation\n($\\sim$77 kcps at $\\sim$13 $\\mu$s average pulse processing time). The total\ncomponent cost for making an OpenDosimeter is <\\$100, which, combined with its\nopen design (both hardware and software), enables cost-effective local\nreproducibility on a global scale. This paper complements the open-source\ndocumentation by explaining the underlying technology, the algorithm for dose\ncalculation, and areas for future improvement.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OpenDosimeter: Open Hardware Personal X-ray Dosimeter\",\"authors\":\"Norah Ger, Alice Ku, Jasmyn Lopez, N. Robert Bennett, Jia Wang, Grace Ateka, Enoch Anyenda, Matthias Rosezky, Adam S. Wang, Kian Shaker\",\"doi\":\"arxiv-2409.09993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present OpenDosimeter (https://opendosimeter.org/), an open hardware\\nsolution for real-time personal X-ray dose monitoring based on a scintillation\\ncounter. Using an X-ray sensor assembly (LYSO + SiPM) on a custom board powered\\nby a Raspberry Pi Pico, OpenDosimeter provides real-time feedback (1 Hz), data\\nlogging (10 hours), and battery-powered operation. One of the core innovations\\nis that we calibrate the device using $^{241}$Am found in ionization smoke\\ndetectors. Specifically, we use the $\\\\gamma$-emissions to spectrally calibrate\\nthe dosimeter, then calculate the effective dose from X-ray exposure by\\ncompensating for the scintillator absorption efficiency and applying\\nenergy-to-dose coefficients derived from tabulated data in the ICRP 116\\npublication. We demonstrate that this transparent approach enables real-time\\ndose rate readings with a linear response between 0.1-1000 $\\\\mu$Sv/h at\\n$\\\\pm$25% accuracy, tested for energies up to 120 keV. The maximum dose rate\\nreadings are limited by pile-up effects when approaching count rate saturation\\n($\\\\sim$77 kcps at $\\\\sim$13 $\\\\mu$s average pulse processing time). The total\\ncomponent cost for making an OpenDosimeter is <\\\\$100, which, combined with its\\nopen design (both hardware and software), enables cost-effective local\\nreproducibility on a global scale. This paper complements the open-source\\ndocumentation by explaining the underlying technology, the algorithm for dose\\ncalculation, and areas for future improvement.\",\"PeriodicalId\":501378,\"journal\":{\"name\":\"arXiv - PHYS - Medical Physics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们介绍 OpenDosimeter (https://opendosimeter.org/),这是一种基于闪烁计数器的开放式个人 X 射线剂量实时监测解决方案。OpenDosimeter 在由 Raspberry Pi Pico 驱动的定制电路板上使用 X 射线传感器组件(LYSO + SiPM),提供实时反馈(1 Hz)、数据记录(10 小时)和电池供电操作。我们的核心创新之一是使用电离烟雾探测器中的 $^{241}$Am 对设备进行校准。具体来说,我们使用伽马射线发射来对剂量计进行光谱校准,然后通过补偿闪烁体的吸收效率并应用根据国际放射防护委员会第 116 号出版物中的表格数据得出的能量-剂量系数来计算 X 射线照射的有效剂量。我们证明了这种透明的方法能够实现实时剂量率读数,其线性响应在 0.1-1000 $m\$Sv/h 之间,精度为 $/pm$25%,测试能量高达 120 keV。当接近计数率饱和时,最大剂量率读数受到堆积效应的限制(在平均脉冲处理时间为13秒时,最大剂量率为77 kcps)。制作 OpenDosimeter 的总元件成本小于 100 美元,再加上其开放式设计(包括硬件和软件),可以在全球范围内实现具有成本效益的本地可重复性。本文通过解释底层技术、度量计算算法和未来改进领域,对开源文档进行了补充。
OpenDosimeter: Open Hardware Personal X-ray Dosimeter
We present OpenDosimeter (https://opendosimeter.org/), an open hardware
solution for real-time personal X-ray dose monitoring based on a scintillation
counter. Using an X-ray sensor assembly (LYSO + SiPM) on a custom board powered
by a Raspberry Pi Pico, OpenDosimeter provides real-time feedback (1 Hz), data
logging (10 hours), and battery-powered operation. One of the core innovations
is that we calibrate the device using $^{241}$Am found in ionization smoke
detectors. Specifically, we use the $\gamma$-emissions to spectrally calibrate
the dosimeter, then calculate the effective dose from X-ray exposure by
compensating for the scintillator absorption efficiency and applying
energy-to-dose coefficients derived from tabulated data in the ICRP 116
publication. We demonstrate that this transparent approach enables real-time
dose rate readings with a linear response between 0.1-1000 $\mu$Sv/h at
$\pm$25% accuracy, tested for energies up to 120 keV. The maximum dose rate
readings are limited by pile-up effects when approaching count rate saturation
($\sim$77 kcps at $\sim$13 $\mu$s average pulse processing time). The total
component cost for making an OpenDosimeter is <\$100, which, combined with its
open design (both hardware and software), enables cost-effective local
reproducibility on a global scale. This paper complements the open-source
documentation by explaining the underlying technology, the algorithm for dose
calculation, and areas for future improvement.