合成主动脉:参数化健康主动脉的三维网格数据集

Domagoj Bošnjak, Gian Marco Melito, Katrin Ellermann, Thomas-Peter Fries
{"title":"合成主动脉:参数化健康主动脉的三维网格数据集","authors":"Domagoj Bošnjak, Gian Marco Melito, Katrin Ellermann, Thomas-Peter Fries","doi":"arxiv-2409.08635","DOIUrl":null,"url":null,"abstract":"The effects of the aortic geometry on its mechanics and blood flow, and\nsubsequently on aortic pathologies, remain largely unexplored. The main\nobstacle lies in obtaining patient-specific aorta models, an extremely\ndifficult procedure in terms of ethics and availability, segmentation, mesh\ngeneration, and all of the accompanying processes. Contrastingly, idealized\nmodels are easy to build but do not faithfully represent patient-specific\nvariability. Additionally, a unified aortic parametrization in clinic and\nengineering has not yet been achieved. To bridge this gap, we introduce a new\nset of statistical parameters to generate synthetic models of the aorta. The\nparameters possess geometric significance and fall within physiological ranges,\neffectively bridging the disciplines of clinical medicine and engineering.\nSmoothly blended realistic representations are recovered with convolution\nsurfaces. These enable high-quality visualization and biological appearance,\nwhereas the structured mesh generation paves the way for numerical simulations.\nThe only requirement of the approach is one patient-specific aorta model and\nthe statistical data for parameter values obtained from the literature. The\noutput of this work is SynthAorta, a dataset of ready-to-use synthetic,\nphysiological aorta models, each containing a centerline, surface\nrepresentation, and a structured hexahedral finite element mesh. The meshes are\nstructured and fully consistent between different cases, making them imminently\nsuitable for reduced order modeling and machine learning approaches.","PeriodicalId":501378,"journal":{"name":"arXiv - PHYS - Medical Physics","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SynthAorta: A 3D Mesh Dataset of Parametrized Physiological Healthy Aortas\",\"authors\":\"Domagoj Bošnjak, Gian Marco Melito, Katrin Ellermann, Thomas-Peter Fries\",\"doi\":\"arxiv-2409.08635\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effects of the aortic geometry on its mechanics and blood flow, and\\nsubsequently on aortic pathologies, remain largely unexplored. The main\\nobstacle lies in obtaining patient-specific aorta models, an extremely\\ndifficult procedure in terms of ethics and availability, segmentation, mesh\\ngeneration, and all of the accompanying processes. Contrastingly, idealized\\nmodels are easy to build but do not faithfully represent patient-specific\\nvariability. Additionally, a unified aortic parametrization in clinic and\\nengineering has not yet been achieved. To bridge this gap, we introduce a new\\nset of statistical parameters to generate synthetic models of the aorta. The\\nparameters possess geometric significance and fall within physiological ranges,\\neffectively bridging the disciplines of clinical medicine and engineering.\\nSmoothly blended realistic representations are recovered with convolution\\nsurfaces. These enable high-quality visualization and biological appearance,\\nwhereas the structured mesh generation paves the way for numerical simulations.\\nThe only requirement of the approach is one patient-specific aorta model and\\nthe statistical data for parameter values obtained from the literature. The\\noutput of this work is SynthAorta, a dataset of ready-to-use synthetic,\\nphysiological aorta models, each containing a centerline, surface\\nrepresentation, and a structured hexahedral finite element mesh. The meshes are\\nstructured and fully consistent between different cases, making them imminently\\nsuitable for reduced order modeling and machine learning approaches.\",\"PeriodicalId\":501378,\"journal\":{\"name\":\"arXiv - PHYS - Medical Physics\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Medical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08635\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Medical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

主动脉的几何形状对其力学和血流的影响,以及随后对主动脉病变的影响,在很大程度上仍未得到探索。主要障碍在于获得病人特异的主动脉模型,从道德和可用性、分割、网格生成以及所有相关过程来看,这是一个极其困难的过程。相比之下,理想化模型虽然容易建立,但却不能忠实地反映患者的特异性。此外,临床和工程中尚未实现统一的主动脉参数化。为了弥补这一差距,我们引入了一组统计参数来生成主动脉合成模型。这些参数具有几何意义,并在生理范围内,有效地连接了临床医学和工程学。这种方法只需要一个特定患者的主动脉模型和从文献中获得的参数值统计数据。这项工作的成果是 SynthAorta,这是一个可随时使用的合成生理主动脉模型数据集,每个模型都包含中心线、表面描述和结构化六面体有限元网格。这些网格是结构化的,在不同情况下完全一致,因此非常适合减阶建模和机器学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SynthAorta: A 3D Mesh Dataset of Parametrized Physiological Healthy Aortas
The effects of the aortic geometry on its mechanics and blood flow, and subsequently on aortic pathologies, remain largely unexplored. The main obstacle lies in obtaining patient-specific aorta models, an extremely difficult procedure in terms of ethics and availability, segmentation, mesh generation, and all of the accompanying processes. Contrastingly, idealized models are easy to build but do not faithfully represent patient-specific variability. Additionally, a unified aortic parametrization in clinic and engineering has not yet been achieved. To bridge this gap, we introduce a new set of statistical parameters to generate synthetic models of the aorta. The parameters possess geometric significance and fall within physiological ranges, effectively bridging the disciplines of clinical medicine and engineering. Smoothly blended realistic representations are recovered with convolution surfaces. These enable high-quality visualization and biological appearance, whereas the structured mesh generation paves the way for numerical simulations. The only requirement of the approach is one patient-specific aorta model and the statistical data for parameter values obtained from the literature. The output of this work is SynthAorta, a dataset of ready-to-use synthetic, physiological aorta models, each containing a centerline, surface representation, and a structured hexahedral finite element mesh. The meshes are structured and fully consistent between different cases, making them imminently suitable for reduced order modeling and machine learning approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Learning of a Hyperelastic Behavior with a Physics-Augmented Neural Network Modeling water radiolysis with Geant4-DNA: Impact of the temporal structure of the irradiation pulse under oxygen conditions Fast Spot Order Optimization to Increase Dose Rates in Scanned Particle Therapy FLASH Treatments The i-TED Compton Camera Array for real-time boron imaging and determination during treatments in Boron Neutron Capture Therapy OpenDosimeter: Open Hardware Personal X-ray Dosimeter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1