利用磁隧道结的自旋电子神经元实现低功耗神经形态计算

Steven Louis, Hannah Bradley, Cody Trevillian, Andrei Slavin, Vasyl Tyberkevych
{"title":"利用磁隧道结的自旋电子神经元实现低功耗神经形态计算","authors":"Steven Louis, Hannah Bradley, Cody Trevillian, Andrei Slavin, Vasyl Tyberkevych","doi":"arxiv-2409.09268","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel spiking artificial neuron design based on a\ncombined spin valve/magnetic tunnel junction (SV/MTJ). Traditional hardware\nused in artificial intelligence and machine learning faces significant\nchallenges related to high power consumption and scalability. To address these\nchallenges, spintronic neurons, which can mimic biologically inspired neural\nbehaviors, offer a promising solution. We present a model of an SV/MTJ-based\nneuron which uses technologies that have been successfully integrated with CMOS\nin commercially available applications. The operational dynamics of the neuron\nare derived analytically through the Landau-Lifshitz-Gilbert-Slonczewski (LLGS)\nequation, demonstrating its ability to replicate key spiking characteristics of\nbiological neurons, such as response latency and refractive behavior.\nSimulation results indicate that the proposed neuron design can operate on a\ntimescale of about 1 ns, without any bias current, and with power consumption\nas low as 50 uW.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spintronic Neuron Using a Magnetic Tunnel Junction for Low-Power Neuromorphic Computing\",\"authors\":\"Steven Louis, Hannah Bradley, Cody Trevillian, Andrei Slavin, Vasyl Tyberkevych\",\"doi\":\"arxiv-2409.09268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel spiking artificial neuron design based on a\\ncombined spin valve/magnetic tunnel junction (SV/MTJ). Traditional hardware\\nused in artificial intelligence and machine learning faces significant\\nchallenges related to high power consumption and scalability. To address these\\nchallenges, spintronic neurons, which can mimic biologically inspired neural\\nbehaviors, offer a promising solution. We present a model of an SV/MTJ-based\\nneuron which uses technologies that have been successfully integrated with CMOS\\nin commercially available applications. The operational dynamics of the neuron\\nare derived analytically through the Landau-Lifshitz-Gilbert-Slonczewski (LLGS)\\nequation, demonstrating its ability to replicate key spiking characteristics of\\nbiological neurons, such as response latency and refractive behavior.\\nSimulation results indicate that the proposed neuron design can operate on a\\ntimescale of about 1 ns, without any bias current, and with power consumption\\nas low as 50 uW.\",\"PeriodicalId\":501083,\"journal\":{\"name\":\"arXiv - PHYS - Applied Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.09268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于组合自旋阀/磁隧道结(SV/MTJ)的新型尖峰人工神经元设计。人工智能和机器学习中使用的传统硬件面临着与高功耗和可扩展性有关的重大挑战。为了应对这些挑战,能够模仿生物神经行为的自旋电子神经元提供了一种前景广阔的解决方案。我们介绍了一个基于 SV/MTJ 的神经元模型,该模型采用的技术已在商业应用中与 CMOS 成功集成。仿真结果表明,所提出的神经元设计可以在约 1 ns 的时间尺度上工作,无需任何偏置电流,功耗低至 50 uW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spintronic Neuron Using a Magnetic Tunnel Junction for Low-Power Neuromorphic Computing
This paper proposes a novel spiking artificial neuron design based on a combined spin valve/magnetic tunnel junction (SV/MTJ). Traditional hardware used in artificial intelligence and machine learning faces significant challenges related to high power consumption and scalability. To address these challenges, spintronic neurons, which can mimic biologically inspired neural behaviors, offer a promising solution. We present a model of an SV/MTJ-based neuron which uses technologies that have been successfully integrated with CMOS in commercially available applications. The operational dynamics of the neuron are derived analytically through the Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation, demonstrating its ability to replicate key spiking characteristics of biological neurons, such as response latency and refractive behavior. Simulation results indicate that the proposed neuron design can operate on a timescale of about 1 ns, without any bias current, and with power consumption as low as 50 uW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrafast cascade charge transfer in multi bandgap colloidal quantum dot solids enables threshold reduction for optical gain and stimulated emission p-(001)NiO/n-(0001)ZnO Heterostructures based Ultraviolet Photodetectors Normal/inverse Doppler effect of backward volume magnetostatic spin waves Unattended field measurement of bird source level Fabrication of Ultra-Thick Masks for X-ray Phase Contrast Imaging at Higher Energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1