Pol Capdevila, Yanis Zentner, Graciel·la Rovira, Joaquim Garrabou, Alba Medrano, Cristina Linares
{"title":"受海洋热浪影响的地中海章鱼种群抗干扰能力较弱","authors":"Pol Capdevila, Yanis Zentner, Graciel·la Rovira, Joaquim Garrabou, Alba Medrano, Cristina Linares","doi":"10.1111/1365-2656.14147","DOIUrl":null,"url":null,"abstract":"<jats:list> <jats:list-item>The effects of climate change are now more pervasive than ever. Marine ecosystems have been particularly impacted by climate change, with marine heatwaves (MHWs) being a strong driver of mass mortality events. Even in the most optimistic greenhouse gas emission scenarios, MHWs will continue to increase in frequency, intensity and duration. For this reason, understanding the resilience of marine species to the increase of MHWs is crucial to predicting their viability under future climatic conditions.</jats:list-item> <jats:list-item>In this study, we explored the consequences of MHWs on the resilience (the ability of a population to resist and recover after a disturbance) of a Mediterranean key octocoral species, <jats:italic>Paramuricea clavata</jats:italic>, to further disturbances to their population structure. To quantify <jats:italic>P. clavata</jats:italic>'s capacity to resist and recover from future disturbances, we used demographic information collected from 1999 to 2022, from two different sites in the NW Mediterranean Sea to calculate the transient dynamics of their populations.</jats:list-item> <jats:list-item>Our results showed that the differences in the dynamics of populations exposed and those not exposed to MHWs were driven mostly by differences in mean survivorship and growth. We also showed that after MHWs <jats:italic>P. clavata</jats:italic> populations had lower resistance and slower rates of recovery than those not exposed to MHWs. Populations exposed to MHWs had lower resistance elasticity to most demographic processes compared to unexposed populations. In contrast, the only demographic process showing some differences when comparing the speed of recovery elasticity values between populations exposed and unexposed to MHWs was stasis. Finally, under scenarios of increasing frequency of MHWs, the extinction of <jats:italic>P. clavata</jats:italic> populations will accelerate and their capacity to resist and recover after further disturbances will be hampered.</jats:list-item> <jats:list-item>Overall, these findings confirm that future climatic conditions will make octocoral populations even more vulnerable to further disturbances. These results highlight the importance of limiting local impacts on marine ecosystems to dampen the consequences of climate change.</jats:list-item> </jats:list>","PeriodicalId":14934,"journal":{"name":"Journal of Animal Ecology","volume":"1 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mediterranean octocoral populations exposed to marine heatwaves are less resilient to disturbances\",\"authors\":\"Pol Capdevila, Yanis Zentner, Graciel·la Rovira, Joaquim Garrabou, Alba Medrano, Cristina Linares\",\"doi\":\"10.1111/1365-2656.14147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:list> <jats:list-item>The effects of climate change are now more pervasive than ever. Marine ecosystems have been particularly impacted by climate change, with marine heatwaves (MHWs) being a strong driver of mass mortality events. Even in the most optimistic greenhouse gas emission scenarios, MHWs will continue to increase in frequency, intensity and duration. For this reason, understanding the resilience of marine species to the increase of MHWs is crucial to predicting their viability under future climatic conditions.</jats:list-item> <jats:list-item>In this study, we explored the consequences of MHWs on the resilience (the ability of a population to resist and recover after a disturbance) of a Mediterranean key octocoral species, <jats:italic>Paramuricea clavata</jats:italic>, to further disturbances to their population structure. To quantify <jats:italic>P. clavata</jats:italic>'s capacity to resist and recover from future disturbances, we used demographic information collected from 1999 to 2022, from two different sites in the NW Mediterranean Sea to calculate the transient dynamics of their populations.</jats:list-item> <jats:list-item>Our results showed that the differences in the dynamics of populations exposed and those not exposed to MHWs were driven mostly by differences in mean survivorship and growth. We also showed that after MHWs <jats:italic>P. clavata</jats:italic> populations had lower resistance and slower rates of recovery than those not exposed to MHWs. Populations exposed to MHWs had lower resistance elasticity to most demographic processes compared to unexposed populations. In contrast, the only demographic process showing some differences when comparing the speed of recovery elasticity values between populations exposed and unexposed to MHWs was stasis. Finally, under scenarios of increasing frequency of MHWs, the extinction of <jats:italic>P. clavata</jats:italic> populations will accelerate and their capacity to resist and recover after further disturbances will be hampered.</jats:list-item> <jats:list-item>Overall, these findings confirm that future climatic conditions will make octocoral populations even more vulnerable to further disturbances. These results highlight the importance of limiting local impacts on marine ecosystems to dampen the consequences of climate change.</jats:list-item> </jats:list>\",\"PeriodicalId\":14934,\"journal\":{\"name\":\"Journal of Animal Ecology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/1365-2656.14147\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/1365-2656.14147","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Mediterranean octocoral populations exposed to marine heatwaves are less resilient to disturbances
The effects of climate change are now more pervasive than ever. Marine ecosystems have been particularly impacted by climate change, with marine heatwaves (MHWs) being a strong driver of mass mortality events. Even in the most optimistic greenhouse gas emission scenarios, MHWs will continue to increase in frequency, intensity and duration. For this reason, understanding the resilience of marine species to the increase of MHWs is crucial to predicting their viability under future climatic conditions.In this study, we explored the consequences of MHWs on the resilience (the ability of a population to resist and recover after a disturbance) of a Mediterranean key octocoral species, Paramuricea clavata, to further disturbances to their population structure. To quantify P. clavata's capacity to resist and recover from future disturbances, we used demographic information collected from 1999 to 2022, from two different sites in the NW Mediterranean Sea to calculate the transient dynamics of their populations.Our results showed that the differences in the dynamics of populations exposed and those not exposed to MHWs were driven mostly by differences in mean survivorship and growth. We also showed that after MHWs P. clavata populations had lower resistance and slower rates of recovery than those not exposed to MHWs. Populations exposed to MHWs had lower resistance elasticity to most demographic processes compared to unexposed populations. In contrast, the only demographic process showing some differences when comparing the speed of recovery elasticity values between populations exposed and unexposed to MHWs was stasis. Finally, under scenarios of increasing frequency of MHWs, the extinction of P. clavata populations will accelerate and their capacity to resist and recover after further disturbances will be hampered.Overall, these findings confirm that future climatic conditions will make octocoral populations even more vulnerable to further disturbances. These results highlight the importance of limiting local impacts on marine ecosystems to dampen the consequences of climate change.
期刊介绍:
Journal of Animal Ecology publishes the best original research on all aspects of animal ecology, ranging from the molecular to the ecosystem level. These may be field, laboratory and theoretical studies utilising terrestrial, freshwater or marine systems.