在 Ti-6Al-7Nb 合金中添加 Ta 元素对机械和物理特性的影响

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY JOM Pub Date : 2024-09-16 DOI:10.1007/s11837-024-06843-5
Ugur Caligulu, Hulya Durmus, Haluk Kejanli, Ali Riza Keskinkilic, Esra Balci
{"title":"在 Ti-6Al-7Nb 合金中添加 Ta 元素对机械和物理特性的影响","authors":"Ugur Caligulu, Hulya Durmus, Haluk Kejanli, Ali Riza Keskinkilic, Esra Balci","doi":"10.1007/s11837-024-06843-5","DOIUrl":null,"url":null,"abstract":"<p>Ti and its alloys play a leading role in biomedical applications within the field of materials science. In this study, different amounts of Ta were added to the TiAlNb alloy. Various analyses were carried out to determine the physical and chemical properties of the produced samples. DSC (differential scanning calorimetry), and XRD (X-ray diffraction) analyses were conducted to determine the phase transformations and crystal structure of the alloys, respectively. SEM-EDX (scanning electron microscopy) and OM (optical microscopy) images were taken to analyze the chemical structure of the samples and to examine their microstructures in more detail. Microhardness and wear resistance tests were performed to determine some mechanical properties of the produced samples. It was observed that increasing the tantalum content increased both hardness and wear resistance. These findings suggest that the addition of tantalum to the Ti-6Al-7Nb alloy could be an effective strategy to improve biomaterial performance.</p>","PeriodicalId":605,"journal":{"name":"JOM","volume":"29 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects on Mechanical and Physical Properties of Ta Element Addition to Ti-6Al-7Nb Alloy\",\"authors\":\"Ugur Caligulu, Hulya Durmus, Haluk Kejanli, Ali Riza Keskinkilic, Esra Balci\",\"doi\":\"10.1007/s11837-024-06843-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ti and its alloys play a leading role in biomedical applications within the field of materials science. In this study, different amounts of Ta were added to the TiAlNb alloy. Various analyses were carried out to determine the physical and chemical properties of the produced samples. DSC (differential scanning calorimetry), and XRD (X-ray diffraction) analyses were conducted to determine the phase transformations and crystal structure of the alloys, respectively. SEM-EDX (scanning electron microscopy) and OM (optical microscopy) images were taken to analyze the chemical structure of the samples and to examine their microstructures in more detail. Microhardness and wear resistance tests were performed to determine some mechanical properties of the produced samples. It was observed that increasing the tantalum content increased both hardness and wear resistance. These findings suggest that the addition of tantalum to the Ti-6Al-7Nb alloy could be an effective strategy to improve biomaterial performance.</p>\",\"PeriodicalId\":605,\"journal\":{\"name\":\"JOM\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOM\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11837-024-06843-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11837-024-06843-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钛及其合金在材料科学领域的生物医学应用中发挥着主导作用。在这项研究中,TiAlNb 合金中添加了不同数量的 Ta。为确定所制样品的物理和化学性质,进行了各种分析。DSC(差示扫描量热法)和 XRD(X 射线衍射法)分析分别用于确定合金的相变和晶体结构。扫描电子显微镜(SEM-EDX)和光学显微镜(OM)图像用于分析样品的化学结构,并更详细地检查其微观结构。还进行了显微硬度和耐磨性测试,以确定所制样品的一些机械性能。结果表明,钽含量的增加会提高硬度和耐磨性。这些研究结果表明,在 Ti-6Al-7Nb 合金中添加钽可能是提高生物材料性能的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects on Mechanical and Physical Properties of Ta Element Addition to Ti-6Al-7Nb Alloy

Ti and its alloys play a leading role in biomedical applications within the field of materials science. In this study, different amounts of Ta were added to the TiAlNb alloy. Various analyses were carried out to determine the physical and chemical properties of the produced samples. DSC (differential scanning calorimetry), and XRD (X-ray diffraction) analyses were conducted to determine the phase transformations and crystal structure of the alloys, respectively. SEM-EDX (scanning electron microscopy) and OM (optical microscopy) images were taken to analyze the chemical structure of the samples and to examine their microstructures in more detail. Microhardness and wear resistance tests were performed to determine some mechanical properties of the produced samples. It was observed that increasing the tantalum content increased both hardness and wear resistance. These findings suggest that the addition of tantalum to the Ti-6Al-7Nb alloy could be an effective strategy to improve biomaterial performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JOM
JOM 工程技术-材料科学:综合
CiteScore
4.50
自引率
3.80%
发文量
540
审稿时长
2.8 months
期刊介绍: JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.
期刊最新文献
Review of Solid-State Consolidation Processing Techniques of ODS Steels (Hot Extrusion, Hot Isostatic Pressing, Spark Plasma Sintering, and Stir Friction Consolidation): Resulting Microstructures and Mechanical Properties TMS Meeting Headlines In the Final Analysis Optimizing CZ Silicon Crystal Growth: Algorithmic Approach for Defect Minimization Exploration of Microstructural and Physical Characteristics in a Newly Formulated Ceramic Utilizing Kaolin and Waste MgO-C Refractory Bricks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1