Kayhan Gültekin, Karl Gebhardt, John Kormendy, Adi Foord, Ralf Bender, Tod R. Lauer, Jason Pinkney, Douglas O. Richstone, Scott Tremaine
{"title":"NGC 4826 的黑洞质量和测光成分","authors":"Kayhan Gültekin, Karl Gebhardt, John Kormendy, Adi Foord, Ralf Bender, Tod R. Lauer, Jason Pinkney, Douglas O. Richstone, Scott Tremaine","doi":"arxiv-2409.11575","DOIUrl":null,"url":null,"abstract":"We present IR photometry and HST imaging and spectroscopy of Sab galaxy NGC\n4826. Schwarzschild dynamical modeling is used to measure its central black\nhole mass $M$. Photometric decomposition is used to enable a comparison of $M$\nto published scaling relations between black hole masses and properties of host\nbulges. This decomposition implies that NGC 4826 contains classical and pseudo\nbulges of approximately equal mass. The classical bulge has best-fit S\\'ersic\nindex $n=3.27$. The pseudobulge is made up of three parts, an inner lens\n($n=0.18$ at $r\\lesssim4^{\\prime\\prime}$), an outer lens ($n=0.17$ at $r\n\\lesssim 45^{\\prime\\prime}$), and a $n=0.58$ component required to match the\nsurface brightness between the lens components. The total $V$-band luminosity\nof the galaxy is $M_{VT}=-21.07$, the ratio of classical bulge to total light\nis $B/T\\simeq0.12$, and the ratio of pseudobulge to total light is\n$PB/T\\simeq0.13$. The outer disk is exponential ($n=1.07$) and makes up\n$D/T=0.75$ of the light of the galaxy. Our best-fit Schwarzschild model has a\nblack hole mass with $1\\sigma$ uncertainties of $M=8.4^{+1.7}_{-0.6}\\times10^6\\\nM_\\odot$ and a stellar $K$-band mass-to-light ratio of $\\Upsilon_K=0.46\\pm0.03\\\nM_{\\odot}\\ \\mathrm{L}_{\\odot}^{-1}$ at the assumed distance of 7.27 Mpc. Our\nmodeling is marginally consistent with $M=0$ at the $3\\sigma$ limit. These\nbest-fit parameters were calculated assuming the black hole is located where\nthe velocity dispersion is largest; this is offset from the maximum surface\nbrightness, probably because of dust absorption. The black hole mass -- one of\nthe smallest measured by modeling stellar dynamics -- satisfies the well known\ncorrelations of $M$ with the $K$-band luminosity, stellar mass, and velocity\ndispersion of the classical bulge only in contrast to total (classical plus\npseudo) bulge luminosity.","PeriodicalId":501343,"journal":{"name":"arXiv - PHYS - High Energy Astrophysical Phenomena","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Black Hole Mass and Photometric Components of NGC 4826\",\"authors\":\"Kayhan Gültekin, Karl Gebhardt, John Kormendy, Adi Foord, Ralf Bender, Tod R. Lauer, Jason Pinkney, Douglas O. Richstone, Scott Tremaine\",\"doi\":\"arxiv-2409.11575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present IR photometry and HST imaging and spectroscopy of Sab galaxy NGC\\n4826. Schwarzschild dynamical modeling is used to measure its central black\\nhole mass $M$. Photometric decomposition is used to enable a comparison of $M$\\nto published scaling relations between black hole masses and properties of host\\nbulges. This decomposition implies that NGC 4826 contains classical and pseudo\\nbulges of approximately equal mass. The classical bulge has best-fit S\\\\'ersic\\nindex $n=3.27$. The pseudobulge is made up of three parts, an inner lens\\n($n=0.18$ at $r\\\\lesssim4^{\\\\prime\\\\prime}$), an outer lens ($n=0.17$ at $r\\n\\\\lesssim 45^{\\\\prime\\\\prime}$), and a $n=0.58$ component required to match the\\nsurface brightness between the lens components. The total $V$-band luminosity\\nof the galaxy is $M_{VT}=-21.07$, the ratio of classical bulge to total light\\nis $B/T\\\\simeq0.12$, and the ratio of pseudobulge to total light is\\n$PB/T\\\\simeq0.13$. The outer disk is exponential ($n=1.07$) and makes up\\n$D/T=0.75$ of the light of the galaxy. Our best-fit Schwarzschild model has a\\nblack hole mass with $1\\\\sigma$ uncertainties of $M=8.4^{+1.7}_{-0.6}\\\\times10^6\\\\\\nM_\\\\odot$ and a stellar $K$-band mass-to-light ratio of $\\\\Upsilon_K=0.46\\\\pm0.03\\\\\\nM_{\\\\odot}\\\\ \\\\mathrm{L}_{\\\\odot}^{-1}$ at the assumed distance of 7.27 Mpc. Our\\nmodeling is marginally consistent with $M=0$ at the $3\\\\sigma$ limit. These\\nbest-fit parameters were calculated assuming the black hole is located where\\nthe velocity dispersion is largest; this is offset from the maximum surface\\nbrightness, probably because of dust absorption. The black hole mass -- one of\\nthe smallest measured by modeling stellar dynamics -- satisfies the well known\\ncorrelations of $M$ with the $K$-band luminosity, stellar mass, and velocity\\ndispersion of the classical bulge only in contrast to total (classical plus\\npseudo) bulge luminosity.\",\"PeriodicalId\":501343,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Astrophysical Phenomena\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Astrophysical Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Astrophysical Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们展示了 Sab 星系 NGC4826 的红外测光和 HST 成像与光谱。我们利用施瓦兹柴尔德动力学模型来测量其中心黑洞质量$M$。通过光度分解,可以将$M$与已公布的黑洞质量和宿主星系性质之间的比例关系进行比较。这种分解方法意味着 NGC 4826 包含质量大致相同的经典隆起和伪隆起。经典隆起的最佳拟合S/'ersic指数为$n=3.27$。伪凸起由三部分组成,一个内透镜($n=0.18$,r\lesssim4^{\prime\prime}$),一个外透镜($n=0.17$,r\lesssim 45^{\prime\prime}$),以及一个$n=0.58$的部分,用来匹配透镜部分之间的表面亮度。星系的总$V$波段光度为$M_{VT}=-21.07$,经典隆起与总光度的比值为$B/T(simeq0.12$),伪隆起与总光度的比值为$PB/T(simeq0.13$)。外圆盘是指数型的($n=1.07$),占星系光量的$D/T=0.75$。我们的最佳拟合施瓦兹柴尔德模型的黑洞质量(1\sigma$不确定度)为$M=8.4^{+1.7}_{-0.6}\times10^6\M_\odot$,恒星的$K$波段质量光比为$\Upsilon_K=0.46\pm0.03\M_{odot}\mathrm{L}_{\odot}^{-1}$,假定距离为7.27 Mpc。我们的模型在3\sigma$极限下与$M=0$略微一致。这些最佳拟合参数是假设黑洞位于速度弥散最大的地方计算出来的;这与最大表面亮度有偏差,可能是因为尘埃的吸收。黑洞质量--通过恒星动力学建模测得的最小质量之一--满足众所周知的$M$与$K$波段光度、恒星质量和经典暴凸的速度色散之间的相关性,只是与总(经典加伪)暴凸光度不同。
The Black Hole Mass and Photometric Components of NGC 4826
We present IR photometry and HST imaging and spectroscopy of Sab galaxy NGC
4826. Schwarzschild dynamical modeling is used to measure its central black
hole mass $M$. Photometric decomposition is used to enable a comparison of $M$
to published scaling relations between black hole masses and properties of host
bulges. This decomposition implies that NGC 4826 contains classical and pseudo
bulges of approximately equal mass. The classical bulge has best-fit S\'ersic
index $n=3.27$. The pseudobulge is made up of three parts, an inner lens
($n=0.18$ at $r\lesssim4^{\prime\prime}$), an outer lens ($n=0.17$ at $r
\lesssim 45^{\prime\prime}$), and a $n=0.58$ component required to match the
surface brightness between the lens components. The total $V$-band luminosity
of the galaxy is $M_{VT}=-21.07$, the ratio of classical bulge to total light
is $B/T\simeq0.12$, and the ratio of pseudobulge to total light is
$PB/T\simeq0.13$. The outer disk is exponential ($n=1.07$) and makes up
$D/T=0.75$ of the light of the galaxy. Our best-fit Schwarzschild model has a
black hole mass with $1\sigma$ uncertainties of $M=8.4^{+1.7}_{-0.6}\times10^6\
M_\odot$ and a stellar $K$-band mass-to-light ratio of $\Upsilon_K=0.46\pm0.03\
M_{\odot}\ \mathrm{L}_{\odot}^{-1}$ at the assumed distance of 7.27 Mpc. Our
modeling is marginally consistent with $M=0$ at the $3\sigma$ limit. These
best-fit parameters were calculated assuming the black hole is located where
the velocity dispersion is largest; this is offset from the maximum surface
brightness, probably because of dust absorption. The black hole mass -- one of
the smallest measured by modeling stellar dynamics -- satisfies the well known
correlations of $M$ with the $K$-band luminosity, stellar mass, and velocity
dispersion of the classical bulge only in contrast to total (classical plus
pseudo) bulge luminosity.