SDN 中的灵活流量控制方法分析

Marta Szymczyk
{"title":"SDN 中的灵活流量控制方法分析","authors":"Marta Szymczyk","doi":"arxiv-2409.11436","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to analyze methods of flexible control in SDN\nnetworks and to propose a self-developed solution that will enable intelligent\nadaptation of SDN controller performance. This work aims not only to review\nexisting solutions, but also to develop an approach that will increase the\nefficiency and adaptability of network management. The project uses a modern\ntype of machine learning, Reinforcement Learning, which allows autonomous\ndecisions of a network that learns based on its choices in a dynamically\nchanging environment, which is most similar to the way humans learn. The\nsolution aims not only to improve the network's performance, but also its\nflexibility and real-time adaptability - flexible traffic control.","PeriodicalId":501280,"journal":{"name":"arXiv - CS - Networking and Internet Architecture","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of flexible traffic control method in SDN\",\"authors\":\"Marta Szymczyk\",\"doi\":\"arxiv-2409.11436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper is to analyze methods of flexible control in SDN\\nnetworks and to propose a self-developed solution that will enable intelligent\\nadaptation of SDN controller performance. This work aims not only to review\\nexisting solutions, but also to develop an approach that will increase the\\nefficiency and adaptability of network management. The project uses a modern\\ntype of machine learning, Reinforcement Learning, which allows autonomous\\ndecisions of a network that learns based on its choices in a dynamically\\nchanging environment, which is most similar to the way humans learn. The\\nsolution aims not only to improve the network's performance, but also its\\nflexibility and real-time adaptability - flexible traffic control.\",\"PeriodicalId\":501280,\"journal\":{\"name\":\"arXiv - CS - Networking and Internet Architecture\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Networking and Internet Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Networking and Internet Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在分析 SDN 网络中的灵活控制方法,并提出一种自主开发的解决方案,以实现 SDN 控制器性能的智能适应。这项工作的目的不仅在于回顾现有的解决方案,还在于开发一种能够提高网络管理效率和适应性的方法。该项目使用了一种现代机器学习类型--强化学习,它允许网络根据其在动态变化环境中的选择进行自主决策,这与人类的学习方式最为相似。该解决方案的目的不仅在于提高网络的性能,还在于提高其灵活性和实时适应性--灵活的交通控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of flexible traffic control method in SDN
The aim of this paper is to analyze methods of flexible control in SDN networks and to propose a self-developed solution that will enable intelligent adaptation of SDN controller performance. This work aims not only to review existing solutions, but also to develop an approach that will increase the efficiency and adaptability of network management. The project uses a modern type of machine learning, Reinforcement Learning, which allows autonomous decisions of a network that learns based on its choices in a dynamically changing environment, which is most similar to the way humans learn. The solution aims not only to improve the network's performance, but also its flexibility and real-time adaptability - flexible traffic control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CEF: Connecting Elaborate Federal QKD Networks Age-of-Information and Energy Optimization in Digital Twin Edge Networks Blockchain-Enabled IoV: Secure Communication and Trustworthy Decision-Making Micro-orchestration of RAN functions accelerated in FPGA SoC devices LoRa Communication for Agriculture 4.0: Opportunities, Challenges, and Future Directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1