{"title":"噻吩的 \"简单 \"光化学作用","authors":"Michael A. Parkes, Graham A. Worth","doi":"10.1063/5.0226105","DOIUrl":null,"url":null,"abstract":"The static gas-phase (“simple”) ultraviolet absorption spectrum of thiophene is investigated using a combination of a vibronic coupling model Hamiltonian with multi-configuration time-dependent Hartree quantum dynamics simulations. The model includes five states and all 21 vibrations, with potential surfaces calculated at the complete active space with second-order perturbation level of theory. The model includes terms up to eighth-order to describe the diabatic potentials. The resulting spectrum is in excellent agreement with the experimentally measured spectrum of Holland et al. [Phys. Chem. Chem. Phys. 16, 21629 (2014)]. The, until now not understood, spectral features are assigned, with a combination of strongly coupled vibrations and vibronic coupling between the states giving rise to a progression of triplets on the rising edge of the broad spectrum. The analysis of the underlying dynamics indicates that population transfer between all states takes place on a sub-100 fs timescale, with ring-opening occurring at longer times. The model thus provides a starting point for further investigations into the complicated photo-excited dynamics of this key hetero-aromatic molecule.","PeriodicalId":501648,"journal":{"name":"The Journal of Chemical Physics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The “simple” photochemistry of thiophene\",\"authors\":\"Michael A. Parkes, Graham A. Worth\",\"doi\":\"10.1063/5.0226105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The static gas-phase (“simple”) ultraviolet absorption spectrum of thiophene is investigated using a combination of a vibronic coupling model Hamiltonian with multi-configuration time-dependent Hartree quantum dynamics simulations. The model includes five states and all 21 vibrations, with potential surfaces calculated at the complete active space with second-order perturbation level of theory. The model includes terms up to eighth-order to describe the diabatic potentials. The resulting spectrum is in excellent agreement with the experimentally measured spectrum of Holland et al. [Phys. Chem. Chem. Phys. 16, 21629 (2014)]. The, until now not understood, spectral features are assigned, with a combination of strongly coupled vibrations and vibronic coupling between the states giving rise to a progression of triplets on the rising edge of the broad spectrum. The analysis of the underlying dynamics indicates that population transfer between all states takes place on a sub-100 fs timescale, with ring-opening occurring at longer times. The model thus provides a starting point for further investigations into the complicated photo-excited dynamics of this key hetero-aromatic molecule.\",\"PeriodicalId\":501648,\"journal\":{\"name\":\"The Journal of Chemical Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Chemical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0226105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Chemical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0226105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
采用振子耦合模型哈密顿与多配置时变哈特里量子动力学模拟相结合的方法,研究了噻吩的静态气相("简单")紫外吸收光谱。该模型包括五种状态和所有 21 个振动,其势能面是在完整的活性空间以二阶扰动理论水平计算得出的。该模型包括高达八阶的项来描述二态势。所得到的光谱与 Holland 等人的实验测量光谱非常吻合[Phys.迄今为止还不为人所知的光谱特征是由强耦合振动和态之间的振子耦合共同作用而产生的,在宽光谱的上升沿出现了三连串。对基本动力学的分析表明,所有状态之间的种群转移都发生在 100 fs 以下的时间尺度上,而开环则发生在更长的时间内。因此,该模型为进一步研究这种关键杂芳香族分子的复杂光激发动力学提供了一个起点。
The static gas-phase (“simple”) ultraviolet absorption spectrum of thiophene is investigated using a combination of a vibronic coupling model Hamiltonian with multi-configuration time-dependent Hartree quantum dynamics simulations. The model includes five states and all 21 vibrations, with potential surfaces calculated at the complete active space with second-order perturbation level of theory. The model includes terms up to eighth-order to describe the diabatic potentials. The resulting spectrum is in excellent agreement with the experimentally measured spectrum of Holland et al. [Phys. Chem. Chem. Phys. 16, 21629 (2014)]. The, until now not understood, spectral features are assigned, with a combination of strongly coupled vibrations and vibronic coupling between the states giving rise to a progression of triplets on the rising edge of the broad spectrum. The analysis of the underlying dynamics indicates that population transfer between all states takes place on a sub-100 fs timescale, with ring-opening occurring at longer times. The model thus provides a starting point for further investigations into the complicated photo-excited dynamics of this key hetero-aromatic molecule.