{"title":"用于轻量级和任意大小 JPEG 隐藏分析的空间-频率特性融合网络","authors":"Xulong Liu;Weixiang Li;Kaiqing Lin;Bin Li","doi":"10.1109/LSP.2024.3462174","DOIUrl":null,"url":null,"abstract":"Current deep learning-based JPEG image steganalysis methods typically rely on decompressed pixels for steganalytic feature extraction, without fully leveraging the inherent information in JPEG images. Additionally, they often face limitations such as large parameter counts and restricted image sizes for detection. In this letter, we propose a spatial-frequency feature fusion network (SF3Net) for lightweight and arbitrary-sized JPEG steganalysis. SF3Net introduces a PReLU activation function and a multi-view convolutional module to capture refined residual features from decompressed pixels, while also integrating original DCT coefficients and quantization tables to extract additional modal features. The spatial-frequency multi-modality features are then fused using a coordinate attention mechanism. And a patch splitting scheme is designed to be compatible with any feature resolution, enabling the detection of arbitrary-sized images with a Swin Transformer block. Experimental results demonstrate that SF3Net outperforms existing methods in detecting both fixed-sized and arbitrary-sized images, while significantly reducing the number of parameters.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"31 ","pages":"2585-2589"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial-Frequency Feature Fusion Network for Lightweight and Arbitrary-Sized JPEG Steganalysis\",\"authors\":\"Xulong Liu;Weixiang Li;Kaiqing Lin;Bin Li\",\"doi\":\"10.1109/LSP.2024.3462174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current deep learning-based JPEG image steganalysis methods typically rely on decompressed pixels for steganalytic feature extraction, without fully leveraging the inherent information in JPEG images. Additionally, they often face limitations such as large parameter counts and restricted image sizes for detection. In this letter, we propose a spatial-frequency feature fusion network (SF3Net) for lightweight and arbitrary-sized JPEG steganalysis. SF3Net introduces a PReLU activation function and a multi-view convolutional module to capture refined residual features from decompressed pixels, while also integrating original DCT coefficients and quantization tables to extract additional modal features. The spatial-frequency multi-modality features are then fused using a coordinate attention mechanism. And a patch splitting scheme is designed to be compatible with any feature resolution, enabling the detection of arbitrary-sized images with a Swin Transformer block. Experimental results demonstrate that SF3Net outperforms existing methods in detecting both fixed-sized and arbitrary-sized images, while significantly reducing the number of parameters.\",\"PeriodicalId\":13154,\"journal\":{\"name\":\"IEEE Signal Processing Letters\",\"volume\":\"31 \",\"pages\":\"2585-2589\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Signal Processing Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10681665/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10681665/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Spatial-Frequency Feature Fusion Network for Lightweight and Arbitrary-Sized JPEG Steganalysis
Current deep learning-based JPEG image steganalysis methods typically rely on decompressed pixels for steganalytic feature extraction, without fully leveraging the inherent information in JPEG images. Additionally, they often face limitations such as large parameter counts and restricted image sizes for detection. In this letter, we propose a spatial-frequency feature fusion network (SF3Net) for lightweight and arbitrary-sized JPEG steganalysis. SF3Net introduces a PReLU activation function and a multi-view convolutional module to capture refined residual features from decompressed pixels, while also integrating original DCT coefficients and quantization tables to extract additional modal features. The spatial-frequency multi-modality features are then fused using a coordinate attention mechanism. And a patch splitting scheme is designed to be compatible with any feature resolution, enabling the detection of arbitrary-sized images with a Swin Transformer block. Experimental results demonstrate that SF3Net outperforms existing methods in detecting both fixed-sized and arbitrary-sized images, while significantly reducing the number of parameters.
期刊介绍:
The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.