{"title":"BMSCs衍生的细胞外载体miR-29a-3p通过调节Treg/Th17细胞改善大鼠肌无力的稳定性","authors":"Zhongben Tang,Meiqiu Chen,Chen Chen,Chao Fan,Jiaxian Huang","doi":"10.1080/08820139.2024.2404629","DOIUrl":null,"url":null,"abstract":"INTRODUCTION\r\nMyasthenia gravis (MG) is an autoimmune disorder. Microvesicle-derived miRNAs have been implicated in autoimmune diseases. However, the role of microvesicle-derived miR-29a-3p in MG remains poorly understood. This study aimed to investigate the therapeutic effect and mechanism of miR-29a-3p derived from stem cell microvesicles (MVs) on experimental autoimmune myasthenia gravis (EAMG) rats.\r\n\r\nMETHODS\r\nEAMG was induced in rats by injection of the subunit of the rat nicotinic anti-acetylcholine receptor (AChR) R97-116 peptide.Besides the control group, EAMG rats were randomly allocated into the EAMG model group, MV group, MV-NC-agomir group, and MV- miR-29a-3p-agomir group.\r\n\r\nRESULTS\r\nOur results found that BMSCs-MV promoted miR-29a-3p expression in gastrocnemius of EAMG rats. Bone marrow mesenchymal stem cells (BMSCs) derived microvesicle miR-29a-3p improved the hanging ability and swimming time of EMGA rats and weakened the degree of muscle fiber atrophy. Furthermore, microvesicles from miR-29a-3p overexpressing BMSCs reduced the content of AchR-Ab in the serum of EAMG rats. BMSC-derived microvesicle miR-29a-3p further suppressed the expression of IFN-γ and enhanced the IL-4 and IL-10 in the serum of EAMG rats by restoring the Th17/Treg cells balance.\r\n\r\nDISCUSSION\r\nBMSCs-derived microvesicle miR-29a-3p improved the stability of rat myasthenia gravis by regulating Treg/Th17 cells. It may be an effective treatment for MG.","PeriodicalId":13387,"journal":{"name":"Immunological Investigations","volume":"10 1","pages":"1-17"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BMSCs-Derived Extracellular VesiclemiR-29a-3p Improved the Stability of Rat Myasthenia Gravis by Regulating Treg/Th17 Cells.\",\"authors\":\"Zhongben Tang,Meiqiu Chen,Chen Chen,Chao Fan,Jiaxian Huang\",\"doi\":\"10.1080/08820139.2024.2404629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"INTRODUCTION\\r\\nMyasthenia gravis (MG) is an autoimmune disorder. Microvesicle-derived miRNAs have been implicated in autoimmune diseases. However, the role of microvesicle-derived miR-29a-3p in MG remains poorly understood. This study aimed to investigate the therapeutic effect and mechanism of miR-29a-3p derived from stem cell microvesicles (MVs) on experimental autoimmune myasthenia gravis (EAMG) rats.\\r\\n\\r\\nMETHODS\\r\\nEAMG was induced in rats by injection of the subunit of the rat nicotinic anti-acetylcholine receptor (AChR) R97-116 peptide.Besides the control group, EAMG rats were randomly allocated into the EAMG model group, MV group, MV-NC-agomir group, and MV- miR-29a-3p-agomir group.\\r\\n\\r\\nRESULTS\\r\\nOur results found that BMSCs-MV promoted miR-29a-3p expression in gastrocnemius of EAMG rats. Bone marrow mesenchymal stem cells (BMSCs) derived microvesicle miR-29a-3p improved the hanging ability and swimming time of EMGA rats and weakened the degree of muscle fiber atrophy. Furthermore, microvesicles from miR-29a-3p overexpressing BMSCs reduced the content of AchR-Ab in the serum of EAMG rats. BMSC-derived microvesicle miR-29a-3p further suppressed the expression of IFN-γ and enhanced the IL-4 and IL-10 in the serum of EAMG rats by restoring the Th17/Treg cells balance.\\r\\n\\r\\nDISCUSSION\\r\\nBMSCs-derived microvesicle miR-29a-3p improved the stability of rat myasthenia gravis by regulating Treg/Th17 cells. It may be an effective treatment for MG.\",\"PeriodicalId\":13387,\"journal\":{\"name\":\"Immunological Investigations\",\"volume\":\"10 1\",\"pages\":\"1-17\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunological Investigations\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/08820139.2024.2404629\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunological Investigations","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08820139.2024.2404629","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
BMSCs-Derived Extracellular VesiclemiR-29a-3p Improved the Stability of Rat Myasthenia Gravis by Regulating Treg/Th17 Cells.
INTRODUCTION
Myasthenia gravis (MG) is an autoimmune disorder. Microvesicle-derived miRNAs have been implicated in autoimmune diseases. However, the role of microvesicle-derived miR-29a-3p in MG remains poorly understood. This study aimed to investigate the therapeutic effect and mechanism of miR-29a-3p derived from stem cell microvesicles (MVs) on experimental autoimmune myasthenia gravis (EAMG) rats.
METHODS
EAMG was induced in rats by injection of the subunit of the rat nicotinic anti-acetylcholine receptor (AChR) R97-116 peptide.Besides the control group, EAMG rats were randomly allocated into the EAMG model group, MV group, MV-NC-agomir group, and MV- miR-29a-3p-agomir group.
RESULTS
Our results found that BMSCs-MV promoted miR-29a-3p expression in gastrocnemius of EAMG rats. Bone marrow mesenchymal stem cells (BMSCs) derived microvesicle miR-29a-3p improved the hanging ability and swimming time of EMGA rats and weakened the degree of muscle fiber atrophy. Furthermore, microvesicles from miR-29a-3p overexpressing BMSCs reduced the content of AchR-Ab in the serum of EAMG rats. BMSC-derived microvesicle miR-29a-3p further suppressed the expression of IFN-γ and enhanced the IL-4 and IL-10 in the serum of EAMG rats by restoring the Th17/Treg cells balance.
DISCUSSION
BMSCs-derived microvesicle miR-29a-3p improved the stability of rat myasthenia gravis by regulating Treg/Th17 cells. It may be an effective treatment for MG.
期刊介绍:
Disseminating immunological developments on a worldwide basis, Immunological Investigations encompasses all facets of fundamental and applied immunology, including immunohematology and the study of allergies. This journal provides information presented in the form of original research articles and book reviews, giving a truly in-depth examination of the latest advances in molecular and cellular immunology.