利用基于 LLM 的检测技术打击电话诈骗:我们的现状如何?

Zitong Shen, Kangzhong Wang, Youqian Zhang, Grace Ngai, Eugene Y. Fu
{"title":"利用基于 LLM 的检测技术打击电话诈骗:我们的现状如何?","authors":"Zitong Shen, Kangzhong Wang, Youqian Zhang, Grace Ngai, Eugene Y. Fu","doi":"arxiv-2409.11643","DOIUrl":null,"url":null,"abstract":"Phone scams pose a significant threat to individuals and communities, causing\nsubstantial financial losses and emotional distress. Despite ongoing efforts to\ncombat these scams, scammers continue to adapt and refine their tactics, making\nit imperative to explore innovative countermeasures. This research explores the\npotential of large language models (LLMs) to provide detection of fraudulent\nphone calls. By analyzing the conversational dynamics between scammers and\nvictims, LLM-based detectors can identify potential scams as they occur,\noffering immediate protection to users. While such approaches demonstrate\npromising results, we also acknowledge the challenges of biased datasets,\nrelatively low recall, and hallucinations that must be addressed for further\nadvancement in this field","PeriodicalId":501332,"journal":{"name":"arXiv - CS - Cryptography and Security","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combating Phone Scams with LLM-based Detection: Where Do We Stand?\",\"authors\":\"Zitong Shen, Kangzhong Wang, Youqian Zhang, Grace Ngai, Eugene Y. Fu\",\"doi\":\"arxiv-2409.11643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phone scams pose a significant threat to individuals and communities, causing\\nsubstantial financial losses and emotional distress. Despite ongoing efforts to\\ncombat these scams, scammers continue to adapt and refine their tactics, making\\nit imperative to explore innovative countermeasures. This research explores the\\npotential of large language models (LLMs) to provide detection of fraudulent\\nphone calls. By analyzing the conversational dynamics between scammers and\\nvictims, LLM-based detectors can identify potential scams as they occur,\\noffering immediate protection to users. While such approaches demonstrate\\npromising results, we also acknowledge the challenges of biased datasets,\\nrelatively low recall, and hallucinations that must be addressed for further\\nadvancement in this field\",\"PeriodicalId\":501332,\"journal\":{\"name\":\"arXiv - CS - Cryptography and Security\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Cryptography and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Cryptography and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电话诈骗对个人和社区构成重大威胁,造成巨大的经济损失和精神痛苦。尽管人们一直在努力打击这些诈骗行为,但骗子们仍在不断调整和完善他们的策略,因此探索创新的应对措施势在必行。本研究探讨了大型语言模型(LLM)在检测诈骗电话方面的潜力。通过分析诈骗者和受害者之间的对话动态,基于 LLM 的检测器可以在诈骗发生时识别出潜在的诈骗,从而为用户提供即时保护。虽然这些方法取得了令人鼓舞的成果,但我们也认识到数据集存在偏差、召回率相对较低以及幻觉等挑战,要想在这一领域取得更大进步,就必须解决这些问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combating Phone Scams with LLM-based Detection: Where Do We Stand?
Phone scams pose a significant threat to individuals and communities, causing substantial financial losses and emotional distress. Despite ongoing efforts to combat these scams, scammers continue to adapt and refine their tactics, making it imperative to explore innovative countermeasures. This research explores the potential of large language models (LLMs) to provide detection of fraudulent phone calls. By analyzing the conversational dynamics between scammers and victims, LLM-based detectors can identify potential scams as they occur, offering immediate protection to users. While such approaches demonstrate promising results, we also acknowledge the challenges of biased datasets, relatively low recall, and hallucinations that must be addressed for further advancement in this field
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PAD-FT: A Lightweight Defense for Backdoor Attacks via Data Purification and Fine-Tuning Artemis: Efficient Commit-and-Prove SNARKs for zkML A Survey-Based Quantitative Analysis of Stress Factors and Their Impacts Among Cybersecurity Professionals Log2graphs: An Unsupervised Framework for Log Anomaly Detection with Efficient Feature Extraction Practical Investigation on the Distinguishability of Longa's Atomic Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1