放松 DARTS:放宽眼动识别的可微分架构搜索限制

Hongyu Zhu, Xin Jin, Hongchao Liao, Yan Xiang, Mounim A. El-Yacoubi, Huafeng Qin
{"title":"放松 DARTS:放宽眼动识别的可微分架构搜索限制","authors":"Hongyu Zhu, Xin Jin, Hongchao Liao, Yan Xiang, Mounim A. El-Yacoubi, Huafeng Qin","doi":"arxiv-2409.11652","DOIUrl":null,"url":null,"abstract":"Eye movement biometrics is a secure and innovative identification method.\nDeep learning methods have shown good performance, but their network\narchitecture relies on manual design and combined priori knowledge. To address\nthese issues, we introduce automated network search (NAS) algorithms to the\nfield of eye movement recognition and present Relax DARTS, which is an\nimprovement of the Differentiable Architecture Search (DARTS) to realize more\nefficient network search and training. The key idea is to circumvent the issue\nof weight sharing by independently training the architecture parameters\n$\\alpha$ to achieve a more precise target architecture. Moreover, the\nintroduction of module input weights $\\beta$ allows cells the flexibility to\nselect inputs, to alleviate the overfitting phenomenon and improve the model\nperformance. Results on four public databases demonstrate that the Relax DARTS\nachieves state-of-the-art recognition performance. Notably, Relax DARTS\nexhibits adaptability to other multi-feature temporal classification tasks.","PeriodicalId":501332,"journal":{"name":"arXiv - CS - Cryptography and Security","volume":"212 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relax DARTS: Relaxing the Constraints of Differentiable Architecture Search for Eye Movement Recognition\",\"authors\":\"Hongyu Zhu, Xin Jin, Hongchao Liao, Yan Xiang, Mounim A. El-Yacoubi, Huafeng Qin\",\"doi\":\"arxiv-2409.11652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eye movement biometrics is a secure and innovative identification method.\\nDeep learning methods have shown good performance, but their network\\narchitecture relies on manual design and combined priori knowledge. To address\\nthese issues, we introduce automated network search (NAS) algorithms to the\\nfield of eye movement recognition and present Relax DARTS, which is an\\nimprovement of the Differentiable Architecture Search (DARTS) to realize more\\nefficient network search and training. The key idea is to circumvent the issue\\nof weight sharing by independently training the architecture parameters\\n$\\\\alpha$ to achieve a more precise target architecture. Moreover, the\\nintroduction of module input weights $\\\\beta$ allows cells the flexibility to\\nselect inputs, to alleviate the overfitting phenomenon and improve the model\\nperformance. Results on four public databases demonstrate that the Relax DARTS\\nachieves state-of-the-art recognition performance. Notably, Relax DARTS\\nexhibits adaptability to other multi-feature temporal classification tasks.\",\"PeriodicalId\":501332,\"journal\":{\"name\":\"arXiv - CS - Cryptography and Security\",\"volume\":\"212 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Cryptography and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Cryptography and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

眼动生物识别是一种安全、创新的身份识别方法。深度学习方法已显示出良好的性能,但其网络架构依赖于人工设计和先验知识的结合。为了解决这些问题,我们将自动网络搜索(NAS)算法引入眼动识别领域,并提出了 Relax DARTS,它是对可微分架构搜索(DARTS)的改进,以实现更高效的网络搜索和训练。其主要思想是通过独立训练架构参数$α$来规避权重共享问题,从而实现更精确的目标架构。此外,模块输入权重$\beta$的引入允许细胞灵活选择输入,以缓解过拟合现象,提高模型性能。四个公共数据库的结果表明,Relax DARTS达到了最先进的识别性能。值得注意的是,Relax DARTS 还能适应其他多特征时间分类任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relax DARTS: Relaxing the Constraints of Differentiable Architecture Search for Eye Movement Recognition
Eye movement biometrics is a secure and innovative identification method. Deep learning methods have shown good performance, but their network architecture relies on manual design and combined priori knowledge. To address these issues, we introduce automated network search (NAS) algorithms to the field of eye movement recognition and present Relax DARTS, which is an improvement of the Differentiable Architecture Search (DARTS) to realize more efficient network search and training. The key idea is to circumvent the issue of weight sharing by independently training the architecture parameters $\alpha$ to achieve a more precise target architecture. Moreover, the introduction of module input weights $\beta$ allows cells the flexibility to select inputs, to alleviate the overfitting phenomenon and improve the model performance. Results on four public databases demonstrate that the Relax DARTS achieves state-of-the-art recognition performance. Notably, Relax DARTS exhibits adaptability to other multi-feature temporal classification tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PAD-FT: A Lightweight Defense for Backdoor Attacks via Data Purification and Fine-Tuning Artemis: Efficient Commit-and-Prove SNARKs for zkML A Survey-Based Quantitative Analysis of Stress Factors and Their Impacts Among Cybersecurity Professionals Log2graphs: An Unsupervised Framework for Log Anomaly Detection with Efficient Feature Extraction Practical Investigation on the Distinguishability of Longa's Atomic Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1