LLMs + Persona-Plug = 个性化 LLMs

Jiongnan Liu, Yutao Zhu, Shuting Wang, Xiaochi Wei, Erxue Min, Yu Lu, Shuaiqiang Wang, Dawei Yin, Zhicheng Dou
{"title":"LLMs + Persona-Plug = 个性化 LLMs","authors":"Jiongnan Liu, Yutao Zhu, Shuting Wang, Xiaochi Wei, Erxue Min, Yu Lu, Shuaiqiang Wang, Dawei Yin, Zhicheng Dou","doi":"arxiv-2409.11901","DOIUrl":null,"url":null,"abstract":"Personalization plays a critical role in numerous language tasks and\napplications, since users with the same requirements may prefer diverse outputs\nbased on their individual interests. This has led to the development of various\npersonalized approaches aimed at adapting large language models (LLMs) to\ngenerate customized outputs aligned with user preferences. Some of them involve\nfine-tuning a unique personalized LLM for each user, which is too expensive for\nwidespread application. Alternative approaches introduce personalization\ninformation in a plug-and-play manner by retrieving the user's relevant\nhistorical texts as demonstrations. However, this retrieval-based strategy may\nbreak the continuity of the user history and fail to capture the user's overall\nstyles and patterns, hence leading to sub-optimal performance. To address these\nchallenges, we propose a novel personalized LLM model, \\ours{}. It constructs a\nuser-specific embedding for each individual by modeling all her historical\ncontexts through a lightweight plug-in user embedder module. By attaching this\nembedding to the task input, LLMs can better understand and capture user habits\nand preferences, thereby producing more personalized outputs without tuning\ntheir own parameters. Extensive experiments on various tasks in the language\nmodel personalization (LaMP) benchmark demonstrate that the proposed model\nsignificantly outperforms existing personalized LLM approaches.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LLMs + Persona-Plug = Personalized LLMs\",\"authors\":\"Jiongnan Liu, Yutao Zhu, Shuting Wang, Xiaochi Wei, Erxue Min, Yu Lu, Shuaiqiang Wang, Dawei Yin, Zhicheng Dou\",\"doi\":\"arxiv-2409.11901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personalization plays a critical role in numerous language tasks and\\napplications, since users with the same requirements may prefer diverse outputs\\nbased on their individual interests. This has led to the development of various\\npersonalized approaches aimed at adapting large language models (LLMs) to\\ngenerate customized outputs aligned with user preferences. Some of them involve\\nfine-tuning a unique personalized LLM for each user, which is too expensive for\\nwidespread application. Alternative approaches introduce personalization\\ninformation in a plug-and-play manner by retrieving the user's relevant\\nhistorical texts as demonstrations. However, this retrieval-based strategy may\\nbreak the continuity of the user history and fail to capture the user's overall\\nstyles and patterns, hence leading to sub-optimal performance. To address these\\nchallenges, we propose a novel personalized LLM model, \\\\ours{}. It constructs a\\nuser-specific embedding for each individual by modeling all her historical\\ncontexts through a lightweight plug-in user embedder module. By attaching this\\nembedding to the task input, LLMs can better understand and capture user habits\\nand preferences, thereby producing more personalized outputs without tuning\\ntheir own parameters. Extensive experiments on various tasks in the language\\nmodel personalization (LaMP) benchmark demonstrate that the proposed model\\nsignificantly outperforms existing personalized LLM approaches.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

个性化在众多语言任务和应用中发挥着至关重要的作用,因为具有相同需求的用户可能会根据个人兴趣偏好不同的输出结果。因此,人们开发了各种个性化方法,旨在调整大型语言模型(LLM),以生成符合用户偏好的定制输出。其中一些方法涉及为每个用户微调独特的个性化 LLM,这种方法成本太高,无法广泛应用。其他方法则通过检索用户的相关历史文本作为示范,以即插即用的方式引入个性化信息。然而,这种基于检索的策略可能会破坏用户历史记录的连续性,无法捕捉用户的整体风格和模式,从而导致性能达不到最优。为了应对这些挑战,我们提出了一种新颖的个性化 LLM 模型(ours{})。它通过一个轻量级插件用户嵌入模块对每个人的所有历史语境进行建模,从而为每个人构建特定于用户的嵌入。通过将这种嵌入附加到任务输入,LLM 可以更好地理解和捕捉用户的习惯和偏好,从而在不调整自身参数的情况下产生更加个性化的输出。在语言模型个性化(LaMP)基准中的各种任务上进行的广泛实验表明,所提出的模型明显优于现有的个性化 LLM 方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LLMs + Persona-Plug = Personalized LLMs
Personalization plays a critical role in numerous language tasks and applications, since users with the same requirements may prefer diverse outputs based on their individual interests. This has led to the development of various personalized approaches aimed at adapting large language models (LLMs) to generate customized outputs aligned with user preferences. Some of them involve fine-tuning a unique personalized LLM for each user, which is too expensive for widespread application. Alternative approaches introduce personalization information in a plug-and-play manner by retrieving the user's relevant historical texts as demonstrations. However, this retrieval-based strategy may break the continuity of the user history and fail to capture the user's overall styles and patterns, hence leading to sub-optimal performance. To address these challenges, we propose a novel personalized LLM model, \ours{}. It constructs a user-specific embedding for each individual by modeling all her historical contexts through a lightweight plug-in user embedder module. By attaching this embedding to the task input, LLMs can better understand and capture user habits and preferences, thereby producing more personalized outputs without tuning their own parameters. Extensive experiments on various tasks in the language model personalization (LaMP) benchmark demonstrate that the proposed model significantly outperforms existing personalized LLM approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLMs + Persona-Plug = Personalized LLMs MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts Extract-and-Abstract: Unifying Extractive and Abstractive Summarization within Single Encoder-Decoder Framework Development and bilingual evaluation of Japanese medical large language model within reasonably low computational resources Human-like Affective Cognition in Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1