PARAPHRASUS:评估转述检测模型的综合基准

Andrianos Michail, Simon Clematide, Juri Opitz
{"title":"PARAPHRASUS:评估转述检测模型的综合基准","authors":"Andrianos Michail, Simon Clematide, Juri Opitz","doi":"arxiv-2409.12060","DOIUrl":null,"url":null,"abstract":"The task of determining whether two texts are paraphrases has long been a\nchallenge in NLP. However, the prevailing notion of paraphrase is often quite\nsimplistic, offering only a limited view of the vast spectrum of paraphrase\nphenomena. Indeed, we find that evaluating models in a paraphrase dataset can\nleave uncertainty about their true semantic understanding. To alleviate this,\nwe release paraphrasus, a benchmark designed for multi-dimensional assessment\nof paraphrase detection models and finer model selection. We find that\nparaphrase detection models under a fine-grained evaluation lens exhibit\ntrade-offs that cannot be captured through a single classification dataset.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PARAPHRASUS : A Comprehensive Benchmark for Evaluating Paraphrase Detection Models\",\"authors\":\"Andrianos Michail, Simon Clematide, Juri Opitz\",\"doi\":\"arxiv-2409.12060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The task of determining whether two texts are paraphrases has long been a\\nchallenge in NLP. However, the prevailing notion of paraphrase is often quite\\nsimplistic, offering only a limited view of the vast spectrum of paraphrase\\nphenomena. Indeed, we find that evaluating models in a paraphrase dataset can\\nleave uncertainty about their true semantic understanding. To alleviate this,\\nwe release paraphrasus, a benchmark designed for multi-dimensional assessment\\nof paraphrase detection models and finer model selection. We find that\\nparaphrase detection models under a fine-grained evaluation lens exhibit\\ntrade-offs that cannot be captured through a single classification dataset.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":\"118 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,确定两个文本是否为转述文本一直是 NLP 领域的一项挑战。然而,目前流行的转述概念往往过于简单,只能有限地反映转述现象的广阔范围。事实上,我们发现,在意译数据集中评估模型会给模型的真实语义理解带来不确定性。为了缓解这一问题,我们发布了 paraphrasus,这是一款专为多维度评估意译检测模型和更精细的模型选择而设计的基准软件。我们发现,在细粒度评估视角下的转述检测模型表现出的偏差是单一分类数据集无法捕捉的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PARAPHRASUS : A Comprehensive Benchmark for Evaluating Paraphrase Detection Models
The task of determining whether two texts are paraphrases has long been a challenge in NLP. However, the prevailing notion of paraphrase is often quite simplistic, offering only a limited view of the vast spectrum of paraphrase phenomena. Indeed, we find that evaluating models in a paraphrase dataset can leave uncertainty about their true semantic understanding. To alleviate this, we release paraphrasus, a benchmark designed for multi-dimensional assessment of paraphrase detection models and finer model selection. We find that paraphrase detection models under a fine-grained evaluation lens exhibit trade-offs that cannot be captured through a single classification dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLMs + Persona-Plug = Personalized LLMs MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts Extract-and-Abstract: Unifying Extractive and Abstractive Summarization within Single Encoder-Decoder Framework Development and bilingual evaluation of Japanese medical large language model within reasonably low computational resources Human-like Affective Cognition in Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1