使用大型语言模型生成临床试验表格和图表

Yumeng Yang, Peter Krusche, Kristyn Pantoja, Cheng Shi, Ethan Ludmir, Kirk Roberts, Gen Zhu
{"title":"使用大型语言模型生成临床试验表格和图表","authors":"Yumeng Yang, Peter Krusche, Kristyn Pantoja, Cheng Shi, Ethan Ludmir, Kirk Roberts, Gen Zhu","doi":"arxiv-2409.12046","DOIUrl":null,"url":null,"abstract":"Tables, figures, and listings (TFLs) are essential tools for summarizing\nclinical trial data. Creation of TFLs for reporting activities is often a\ntime-consuming task encountered routinely during the execution of clinical\ntrials. This study explored the use of large language models (LLMs) to automate\nthe generation of TFLs through prompt engineering and few-shot transfer\nlearning. Using public clinical trial data in ADaM format, our results\ndemonstrated that LLMs can efficiently generate TFLs with prompt instructions,\nshowcasing their potential in this domain. Furthermore, we developed a\nconservational agent named Clinical Trial TFL Generation Agent: An app that\nmatches user queries to predefined prompts that produce customized programs to\ngenerate specific predefined TFLs.","PeriodicalId":501030,"journal":{"name":"arXiv - CS - Computation and Language","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Large Language Models to Generate Clinical Trial Tables and Figures\",\"authors\":\"Yumeng Yang, Peter Krusche, Kristyn Pantoja, Cheng Shi, Ethan Ludmir, Kirk Roberts, Gen Zhu\",\"doi\":\"arxiv-2409.12046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tables, figures, and listings (TFLs) are essential tools for summarizing\\nclinical trial data. Creation of TFLs for reporting activities is often a\\ntime-consuming task encountered routinely during the execution of clinical\\ntrials. This study explored the use of large language models (LLMs) to automate\\nthe generation of TFLs through prompt engineering and few-shot transfer\\nlearning. Using public clinical trial data in ADaM format, our results\\ndemonstrated that LLMs can efficiently generate TFLs with prompt instructions,\\nshowcasing their potential in this domain. Furthermore, we developed a\\nconservational agent named Clinical Trial TFL Generation Agent: An app that\\nmatches user queries to predefined prompts that produce customized programs to\\ngenerate specific predefined TFLs.\",\"PeriodicalId\":501030,\"journal\":{\"name\":\"arXiv - CS - Computation and Language\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computation and Language\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computation and Language","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

表、图和列表(TFL)是总结临床试验数据的重要工具。为报告活动创建 TFL 通常是临床试验执行过程中经常遇到的耗时任务。本研究探索了如何使用大型语言模型(LLM),通过提示工程和少量迁移学习自动生成 TFL。通过使用 ADaM 格式的公开临床试验数据,我们的研究结果表明,LLM 可以通过提示指令高效生成 TFL,从而展示了其在该领域的潜力。此外,我们还开发了一个名为 "临床试验 TFL 生成代理 "的服务代理:该应用可将用户查询与预定义提示相匹配,从而生成定制程序,生成特定的预定义 TFL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Large Language Models to Generate Clinical Trial Tables and Figures
Tables, figures, and listings (TFLs) are essential tools for summarizing clinical trial data. Creation of TFLs for reporting activities is often a time-consuming task encountered routinely during the execution of clinical trials. This study explored the use of large language models (LLMs) to automate the generation of TFLs through prompt engineering and few-shot transfer learning. Using public clinical trial data in ADaM format, our results demonstrated that LLMs can efficiently generate TFLs with prompt instructions, showcasing their potential in this domain. Furthermore, we developed a conservational agent named Clinical Trial TFL Generation Agent: An app that matches user queries to predefined prompts that produce customized programs to generate specific predefined TFLs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LLMs + Persona-Plug = Personalized LLMs MEOW: MEMOry Supervised LLM Unlearning Via Inverted Facts Extract-and-Abstract: Unifying Extractive and Abstractive Summarization within Single Encoder-Decoder Framework Development and bilingual evaluation of Japanese medical large language model within reasonably low computational resources Human-like Affective Cognition in Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1