通过水印信息混合实现潜在扩散模型的有效用户归属

Yongyang Pan, Xiaohong Liu, Siqi Luo, Yi Xin, Xiao Guo, Xiaoming Liu, Xiongkuo Min, Guangtao Zhai
{"title":"通过水印信息混合实现潜在扩散模型的有效用户归属","authors":"Yongyang Pan, Xiaohong Liu, Siqi Luo, Yi Xin, Xiao Guo, Xiaoming Liu, Xiongkuo Min, Guangtao Zhai","doi":"arxiv-2409.10958","DOIUrl":null,"url":null,"abstract":"Rapid advancements in multimodal large language models have enabled the\ncreation of hyper-realistic images from textual descriptions. However, these\nadvancements also raise significant concerns about unauthorized use, which\nhinders their broader distribution. Traditional watermarking methods often\nrequire complex integration or degrade image quality. To address these\nchallenges, we introduce a novel framework Towards Effective user Attribution\nfor latent diffusion models via Watermark-Informed Blending (TEAWIB). TEAWIB\nincorporates a unique ready-to-use configuration approach that allows seamless\nintegration of user-specific watermarks into generative models. This approach\nensures that each user can directly apply a pre-configured set of parameters to\nthe model without altering the original model parameters or compromising image\nquality. Additionally, noise and augmentation operations are embedded at the\npixel level to further secure and stabilize watermarked images. Extensive\nexperiments validate the effectiveness of TEAWIB, showcasing the\nstate-of-the-art performance in perceptual quality and attribution accuracy.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending\",\"authors\":\"Yongyang Pan, Xiaohong Liu, Siqi Luo, Yi Xin, Xiao Guo, Xiaoming Liu, Xiongkuo Min, Guangtao Zhai\",\"doi\":\"arxiv-2409.10958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rapid advancements in multimodal large language models have enabled the\\ncreation of hyper-realistic images from textual descriptions. However, these\\nadvancements also raise significant concerns about unauthorized use, which\\nhinders their broader distribution. Traditional watermarking methods often\\nrequire complex integration or degrade image quality. To address these\\nchallenges, we introduce a novel framework Towards Effective user Attribution\\nfor latent diffusion models via Watermark-Informed Blending (TEAWIB). TEAWIB\\nincorporates a unique ready-to-use configuration approach that allows seamless\\nintegration of user-specific watermarks into generative models. This approach\\nensures that each user can directly apply a pre-configured set of parameters to\\nthe model without altering the original model parameters or compromising image\\nquality. Additionally, noise and augmentation operations are embedded at the\\npixel level to further secure and stabilize watermarked images. Extensive\\nexperiments validate the effectiveness of TEAWIB, showcasing the\\nstate-of-the-art performance in perceptual quality and attribution accuracy.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多模态大型语言模型的飞速发展使人们能够根据文字描述创建超逼真的图像。然而,这些进步也引起了人们对未经授权使用的极大担忧,从而阻碍了图像的广泛传播。传统的水印方法往往需要复杂的整合,或者会降低图像质量。为了应对这些挑战,我们推出了一种新型框架:通过水印信息混合(TEAWIB)实现潜在扩散模型的有效用户归属。TEAWIB 包含一种独特的即用型配置方法,可将用户特定的水印无缝集成到生成模型中。这种方法确保每个用户都能直接将预先配置好的参数集应用到模型中,而不会改变原始模型参数或影响图像质量。此外,噪声和增强操作被嵌入到像素级,以进一步确保水印图像的安全性和稳定性。广泛的实验验证了 TEAWIB 的有效性,展示了其在感知质量和归属准确性方面的一流性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Effective User Attribution for Latent Diffusion Models via Watermark-Informed Blending
Rapid advancements in multimodal large language models have enabled the creation of hyper-realistic images from textual descriptions. However, these advancements also raise significant concerns about unauthorized use, which hinders their broader distribution. Traditional watermarking methods often require complex integration or degrade image quality. To address these challenges, we introduce a novel framework Towards Effective user Attribution for latent diffusion models via Watermark-Informed Blending (TEAWIB). TEAWIB incorporates a unique ready-to-use configuration approach that allows seamless integration of user-specific watermarks into generative models. This approach ensures that each user can directly apply a pre-configured set of parameters to the model without altering the original model parameters or compromising image quality. Additionally, noise and augmentation operations are embedded at the pixel level to further secure and stabilize watermarked images. Extensive experiments validate the effectiveness of TEAWIB, showcasing the state-of-the-art performance in perceptual quality and attribution accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT Denoising diffusion models for high-resolution microscopy image restoration Tumor aware recurrent inter-patient deformable image registration of computed tomography scans with lung cancer Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation using Rein to Fine-tune Vision Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1