收拾行装跑路内存计算加速器开销最小化

Pouya Houshmand, Marian Verhelst
{"title":"收拾行装跑路内存计算加速器开销最小化","authors":"Pouya Houshmand, Marian Verhelst","doi":"arxiv-2409.11437","DOIUrl":null,"url":null,"abstract":"In-memory computing hardware accelerators allow more than 10x improvements in\npeak efficiency and performance for matrix-vector multiplications (MVM)\ncompared to conventional digital designs. For this, they have gained great\ninterest for the acceleration of neural network workloads. Nevertheless, these\npotential gains are only achieved when the utilization of the computational\nresources is maximized and the overhead from loading operands in the memory\narray minimized. To this aim, this paper proposes a novel mapping algorithm for\nthe weights in the IMC macro, based on efficient packing of the weights of\nnetwork layers in the available memory. The algorithm realizes 1) minimization\nof weight loading times while at the same time 2) maximally exploiting the\nparallelism of the IMC computational fabric. A set of case studies are carried\nout to show achievable trade-offs for the MLPerf Tiny benchmark\n\\cite{mlperftiny} on IMC architectures, with potential $10-100\\times$ EDP\nimprovements.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pack my weights and run! Minimizing overheads for in-memory computing accelerators\",\"authors\":\"Pouya Houshmand, Marian Verhelst\",\"doi\":\"arxiv-2409.11437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In-memory computing hardware accelerators allow more than 10x improvements in\\npeak efficiency and performance for matrix-vector multiplications (MVM)\\ncompared to conventional digital designs. For this, they have gained great\\ninterest for the acceleration of neural network workloads. Nevertheless, these\\npotential gains are only achieved when the utilization of the computational\\nresources is maximized and the overhead from loading operands in the memory\\narray minimized. To this aim, this paper proposes a novel mapping algorithm for\\nthe weights in the IMC macro, based on efficient packing of the weights of\\nnetwork layers in the available memory. The algorithm realizes 1) minimization\\nof weight loading times while at the same time 2) maximally exploiting the\\nparallelism of the IMC computational fabric. A set of case studies are carried\\nout to show achievable trade-offs for the MLPerf Tiny benchmark\\n\\\\cite{mlperftiny} on IMC architectures, with potential $10-100\\\\times$ EDP\\nimprovements.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与传统数字设计相比,内存计算硬件加速器可将矩阵-向量乘法(MVM)的峰值效率和性能提高 10 倍以上。因此,它们在加速神经网络工作负载方面获得了极大的关注。然而,只有在计算资源利用率最大化、内存阵列中操作数加载开销最小化的情况下,才能实现这些潜在收益。为此,本文提出了一种新颖的 IMC 宏权值映射算法,该算法基于在可用内存中高效打包网络层的权值。该算法实现了 1) 权重加载时间最小化,同时 2) 最大限度地利用 IMC 计算结构的并行性。我们进行了一系列案例研究,展示了 IMC 架构上 MLPerf Tiny 基准(MLPerf Tiny benchmark/cite{mlperftiny})可实现的权衡,以及潜在的 10-100 美元/次的 EDP 改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pack my weights and run! Minimizing overheads for in-memory computing accelerators
In-memory computing hardware accelerators allow more than 10x improvements in peak efficiency and performance for matrix-vector multiplications (MVM) compared to conventional digital designs. For this, they have gained great interest for the acceleration of neural network workloads. Nevertheless, these potential gains are only achieved when the utilization of the computational resources is maximized and the overhead from loading operands in the memory array minimized. To this aim, this paper proposes a novel mapping algorithm for the weights in the IMC macro, based on efficient packing of the weights of network layers in the available memory. The algorithm realizes 1) minimization of weight loading times while at the same time 2) maximally exploiting the parallelism of the IMC computational fabric. A set of case studies are carried out to show achievable trade-offs for the MLPerf Tiny benchmark \cite{mlperftiny} on IMC architectures, with potential $10-100\times$ EDP improvements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT Denoising diffusion models for high-resolution microscopy image restoration Tumor aware recurrent inter-patient deformable image registration of computed tomography scans with lung cancer Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation using Rein to Fine-tune Vision Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1