TTT-Unet:利用测试时间训练层增强 U-Net 以进行生物医学图像分割

Rong Zhou, Zhengqing Yuan, Zhiling Yan, Weixiang Sun, Kai Zhang, Yiwei Li, Yanfang Ye, Xiang Li, Lifang He, Lichao Sun
{"title":"TTT-Unet:利用测试时间训练层增强 U-Net 以进行生物医学图像分割","authors":"Rong Zhou, Zhengqing Yuan, Zhiling Yan, Weixiang Sun, Kai Zhang, Yiwei Li, Yanfang Ye, Xiang Li, Lifang He, Lichao Sun","doi":"arxiv-2409.11299","DOIUrl":null,"url":null,"abstract":"Biomedical image segmentation is crucial for accurately diagnosing and\nanalyzing various diseases. However, Convolutional Neural Networks (CNNs) and\nTransformers, the most commonly used architectures for this task, struggle to\neffectively capture long-range dependencies due to the inherent locality of\nCNNs and the computational complexity of Transformers. To address this\nlimitation, we introduce TTT-Unet, a novel framework that integrates Test-Time\nTraining (TTT) layers into the traditional U-Net architecture for biomedical\nimage segmentation. TTT-Unet dynamically adjusts model parameters during the\ntesting time, enhancing the model's ability to capture both local and\nlong-range features. We evaluate TTT-Unet on multiple medical imaging datasets,\nincluding 3D abdominal organ segmentation in CT and MR images, instrument\nsegmentation in endoscopy images, and cell segmentation in microscopy images.\nThe results demonstrate that TTT-Unet consistently outperforms state-of-the-art\nCNN-based and Transformer-based segmentation models across all tasks. The code\nis available at https://github.com/rongzhou7/TTT-Unet.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TTT-Unet: Enhancing U-Net with Test-Time Training Layers for biomedical image segmentation\",\"authors\":\"Rong Zhou, Zhengqing Yuan, Zhiling Yan, Weixiang Sun, Kai Zhang, Yiwei Li, Yanfang Ye, Xiang Li, Lifang He, Lichao Sun\",\"doi\":\"arxiv-2409.11299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biomedical image segmentation is crucial for accurately diagnosing and\\nanalyzing various diseases. However, Convolutional Neural Networks (CNNs) and\\nTransformers, the most commonly used architectures for this task, struggle to\\neffectively capture long-range dependencies due to the inherent locality of\\nCNNs and the computational complexity of Transformers. To address this\\nlimitation, we introduce TTT-Unet, a novel framework that integrates Test-Time\\nTraining (TTT) layers into the traditional U-Net architecture for biomedical\\nimage segmentation. TTT-Unet dynamically adjusts model parameters during the\\ntesting time, enhancing the model's ability to capture both local and\\nlong-range features. We evaluate TTT-Unet on multiple medical imaging datasets,\\nincluding 3D abdominal organ segmentation in CT and MR images, instrument\\nsegmentation in endoscopy images, and cell segmentation in microscopy images.\\nThe results demonstrate that TTT-Unet consistently outperforms state-of-the-art\\nCNN-based and Transformer-based segmentation models across all tasks. The code\\nis available at https://github.com/rongzhou7/TTT-Unet.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生物医学图像分割对于准确诊断和分析各种疾病至关重要。然而,由于卷积神经网络(CNN)固有的局部性和变换器的计算复杂性,这一任务中最常用的架构--卷积神经网络(CNN)和变换器--难以有效捕捉长距离依赖关系。为了解决这一限制,我们引入了 TTT-Unet,这是一种新型框架,它将测试-时间-训练(TTT)层集成到传统的 U-Net 架构中,用于生物医学图像分割。TTT-Unet 可在测试期间动态调整模型参数,从而增强模型捕捉局部和长距离特征的能力。我们在多个医学影像数据集上对 TTT-Unet 进行了评估,包括 CT 和 MR 图像中的三维腹部器官分割、内窥镜图像中的器械分割以及显微镜图像中的细胞分割。结果表明,在所有任务中,TTT-Unet 的表现始终优于基于 CNN 和 Transformer 的先进分割模型。代码见 https://github.com/rongzhou7/TTT-Unet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TTT-Unet: Enhancing U-Net with Test-Time Training Layers for biomedical image segmentation
Biomedical image segmentation is crucial for accurately diagnosing and analyzing various diseases. However, Convolutional Neural Networks (CNNs) and Transformers, the most commonly used architectures for this task, struggle to effectively capture long-range dependencies due to the inherent locality of CNNs and the computational complexity of Transformers. To address this limitation, we introduce TTT-Unet, a novel framework that integrates Test-Time Training (TTT) layers into the traditional U-Net architecture for biomedical image segmentation. TTT-Unet dynamically adjusts model parameters during the testing time, enhancing the model's ability to capture both local and long-range features. We evaluate TTT-Unet on multiple medical imaging datasets, including 3D abdominal organ segmentation in CT and MR images, instrument segmentation in endoscopy images, and cell segmentation in microscopy images. The results demonstrate that TTT-Unet consistently outperforms state-of-the-art CNN-based and Transformer-based segmentation models across all tasks. The code is available at https://github.com/rongzhou7/TTT-Unet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT Denoising diffusion models for high-resolution microscopy image restoration Tumor aware recurrent inter-patient deformable image registration of computed tomography scans with lung cancer Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation using Rein to Fine-tune Vision Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1