利用多分支注意力图像先验进行多频率电阻抗断层扫描重建

Hao Fang, Zhe Liu, Yi Feng, Zhen Qiu, Pierre Bagnaninchi, Yunjie Yang
{"title":"利用多分支注意力图像先验进行多频率电阻抗断层扫描重建","authors":"Hao Fang, Zhe Liu, Yi Feng, Zhen Qiu, Pierre Bagnaninchi, Yunjie Yang","doi":"arxiv-2409.10794","DOIUrl":null,"url":null,"abstract":"Multi-frequency Electrical Impedance Tomography (mfEIT) is a promising\nbiomedical imaging technique that estimates tissue conductivities across\ndifferent frequencies. Current state-of-the-art (SOTA) algorithms, which rely\non supervised learning and Multiple Measurement Vectors (MMV), require\nextensive training data, making them time-consuming, costly, and less practical\nfor widespread applications. Moreover, the dependency on training data in\nsupervised MMV methods can introduce erroneous conductivity contrasts across\nfrequencies, posing significant concerns in biomedical applications. To address\nthese challenges, we propose a novel unsupervised learning approach based on\nMulti-Branch Attention Image Prior (MAIP) for mfEIT reconstruction. Our method\nemploys a carefully designed Multi-Branch Attention Network (MBA-Net) to\nrepresent multiple frequency-dependent conductivity images and simultaneously\nreconstructs mfEIT images by iteratively updating its parameters. By leveraging\nthe implicit regularization capability of the MBA-Net, our algorithm can\ncapture significant inter- and intra-frequency correlations, enabling robust\nmfEIT reconstruction without the need for training data. Through simulation and\nreal-world experiments, our approach demonstrates performance comparable to, or\nbetter than, SOTA algorithms while exhibiting superior generalization\ncapability. These results suggest that the MAIP-based method can be used to\nimprove the reliability and applicability of mfEIT in various settings.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-frequency Electrical Impedance Tomography Reconstruction with Multi-Branch Attention Image Prior\",\"authors\":\"Hao Fang, Zhe Liu, Yi Feng, Zhen Qiu, Pierre Bagnaninchi, Yunjie Yang\",\"doi\":\"arxiv-2409.10794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-frequency Electrical Impedance Tomography (mfEIT) is a promising\\nbiomedical imaging technique that estimates tissue conductivities across\\ndifferent frequencies. Current state-of-the-art (SOTA) algorithms, which rely\\non supervised learning and Multiple Measurement Vectors (MMV), require\\nextensive training data, making them time-consuming, costly, and less practical\\nfor widespread applications. Moreover, the dependency on training data in\\nsupervised MMV methods can introduce erroneous conductivity contrasts across\\nfrequencies, posing significant concerns in biomedical applications. To address\\nthese challenges, we propose a novel unsupervised learning approach based on\\nMulti-Branch Attention Image Prior (MAIP) for mfEIT reconstruction. Our method\\nemploys a carefully designed Multi-Branch Attention Network (MBA-Net) to\\nrepresent multiple frequency-dependent conductivity images and simultaneously\\nreconstructs mfEIT images by iteratively updating its parameters. By leveraging\\nthe implicit regularization capability of the MBA-Net, our algorithm can\\ncapture significant inter- and intra-frequency correlations, enabling robust\\nmfEIT reconstruction without the need for training data. Through simulation and\\nreal-world experiments, our approach demonstrates performance comparable to, or\\nbetter than, SOTA algorithms while exhibiting superior generalization\\ncapability. These results suggest that the MAIP-based method can be used to\\nimprove the reliability and applicability of mfEIT in various settings.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多频电阻抗层析成像(mfEIT)是一种很有前途的生物医学成像技术,可估算不同频率下的组织电导率。目前最先进的(SOTA)算法依赖于监督学习和多测量向量(MMV),需要大量的训练数据,因此耗时长、成本高,在广泛应用中实用性较差。此外,有监督的多测量向量方法对训练数据的依赖会带来错误的跨频率电导率对比,在生物医学应用中造成严重问题。为了应对这些挑战,我们提出了一种基于多分支注意力图像先验(MAIP)的新型无监督学习方法,用于 mfEIT 重建。我们的方法利用精心设计的多分支注意力网络(MBA-Net)来表示多个频率相关的电导率图像,同时通过迭代更新其参数来重建 mfEIT 图像。通过利用 MBA-Net 的隐式正则化能力,我们的算法可以捕捉到显著的频率间和频率内相关性,从而无需训练数据即可实现稳健的 mfEIT 重建。通过仿真和实际实验,我们的方法表现出了与 SOTA 算法相当甚至更好的性能,同时还表现出了更优越的泛化能力。这些结果表明,基于 MAIP 的方法可用于提高 mfEIT 在各种环境中的可靠性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-frequency Electrical Impedance Tomography Reconstruction with Multi-Branch Attention Image Prior
Multi-frequency Electrical Impedance Tomography (mfEIT) is a promising biomedical imaging technique that estimates tissue conductivities across different frequencies. Current state-of-the-art (SOTA) algorithms, which rely on supervised learning and Multiple Measurement Vectors (MMV), require extensive training data, making them time-consuming, costly, and less practical for widespread applications. Moreover, the dependency on training data in supervised MMV methods can introduce erroneous conductivity contrasts across frequencies, posing significant concerns in biomedical applications. To address these challenges, we propose a novel unsupervised learning approach based on Multi-Branch Attention Image Prior (MAIP) for mfEIT reconstruction. Our method employs a carefully designed Multi-Branch Attention Network (MBA-Net) to represent multiple frequency-dependent conductivity images and simultaneously reconstructs mfEIT images by iteratively updating its parameters. By leveraging the implicit regularization capability of the MBA-Net, our algorithm can capture significant inter- and intra-frequency correlations, enabling robust mfEIT reconstruction without the need for training data. Through simulation and real-world experiments, our approach demonstrates performance comparable to, or better than, SOTA algorithms while exhibiting superior generalization capability. These results suggest that the MAIP-based method can be used to improve the reliability and applicability of mfEIT in various settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT Denoising diffusion models for high-resolution microscopy image restoration Tumor aware recurrent inter-patient deformable image registration of computed tomography scans with lung cancer Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation using Rein to Fine-tune Vision Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1