核结构中的量子魔力和多方纠缠

Florian Brökemeier, S. Momme Hengstenberg, James W. T. Keeble, Caroline E. P. Robin, Federico Rocco, Martin J. Savage
{"title":"核结构中的量子魔力和多方纠缠","authors":"Florian Brökemeier, S. Momme Hengstenberg, James W. T. Keeble, Caroline E. P. Robin, Federico Rocco, Martin J. Savage","doi":"arxiv-2409.12064","DOIUrl":null,"url":null,"abstract":"Motivated by the Gottesman-Knill theorem, we present a detailed study of the\nquantum complexity of $p$-shell and $sd$-shell nuclei. Valence-space nuclear\nshell-model wavefunctions generated by the BIGSTICK code are mapped to qubit\nregisters using the Jordan-Wigner mapping (12 qubits for the $p$-shell and 24\nqubits for the $sd$-shell), from which measures of the many-body entanglement\n($n$-tangles) and magic (non-stabilizerness) are determined. While exact\nevaluations of these measures are possible for nuclei with a modest number of\nactive nucleons, Monte Carlo simulations are required for the more complex\nnuclei. The broadly-applicable Pauli-String $IZ$ exact (PSIZe-) MCMC technique\nis introduced to accelerate the evaluation of measures of magic in deformed\nnuclei (with hierarchical wavefunctions), by factors of $\\sim 8$ for some\nnuclei. Significant multi-nucleon entanglement is found in the $sd$-shell,\ndominated by proton-neutron configurations, along with significant measures of\nmagic. This is evident not only for the deformed states, but also for nuclei on\nthe path to instability via regions of shape coexistence and level inversion.\nThese results indicate that quantum-computing resources will accelerate\nprecision simulations of such nuclei and beyond.","PeriodicalId":501573,"journal":{"name":"arXiv - PHYS - Nuclear Theory","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Magic and Multi-Partite Entanglement in the Structure of Nuclei\",\"authors\":\"Florian Brökemeier, S. Momme Hengstenberg, James W. T. Keeble, Caroline E. P. Robin, Federico Rocco, Martin J. Savage\",\"doi\":\"arxiv-2409.12064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the Gottesman-Knill theorem, we present a detailed study of the\\nquantum complexity of $p$-shell and $sd$-shell nuclei. Valence-space nuclear\\nshell-model wavefunctions generated by the BIGSTICK code are mapped to qubit\\nregisters using the Jordan-Wigner mapping (12 qubits for the $p$-shell and 24\\nqubits for the $sd$-shell), from which measures of the many-body entanglement\\n($n$-tangles) and magic (non-stabilizerness) are determined. While exact\\nevaluations of these measures are possible for nuclei with a modest number of\\nactive nucleons, Monte Carlo simulations are required for the more complex\\nnuclei. The broadly-applicable Pauli-String $IZ$ exact (PSIZe-) MCMC technique\\nis introduced to accelerate the evaluation of measures of magic in deformed\\nnuclei (with hierarchical wavefunctions), by factors of $\\\\sim 8$ for some\\nnuclei. Significant multi-nucleon entanglement is found in the $sd$-shell,\\ndominated by proton-neutron configurations, along with significant measures of\\nmagic. This is evident not only for the deformed states, but also for nuclei on\\nthe path to instability via regions of shape coexistence and level inversion.\\nThese results indicate that quantum-computing resources will accelerate\\nprecision simulations of such nuclei and beyond.\",\"PeriodicalId\":501573,\"journal\":{\"name\":\"arXiv - PHYS - Nuclear Theory\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Nuclear Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.12064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受戈特曼-克尼尔定理的启发,我们对p$壳和sd$壳原子核的量子复杂性进行了详细研究。由 BIGSTICK 代码生成的价空间核壳模型波函数通过乔丹-维格纳映射被映射到量子位寄存器(p$壳为 12 量子位,sd$壳为 24 量子位),并由此确定了多体纠缠(n$三角形)和魔力(非稳定度)的度量。虽然这些量度的精确评估可能适用于活性核子数量不多的原子核,但对于更复杂的原子核则需要蒙特卡罗模拟。介绍了广泛适用的保利弦$IZ$精确(PSIZe-)MCMC技术,以加速对变形核(具有分层波函数)的魔力度量的评估,对某些核来说,其系数为$\sim 8$。在以质子-中子构型为主的$sd$壳中发现了重要的多核纠缠,以及重要的魔力测量。这些结果表明,量子计算资源将加速对这类原子核及其他原子核的精确模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Magic and Multi-Partite Entanglement in the Structure of Nuclei
Motivated by the Gottesman-Knill theorem, we present a detailed study of the quantum complexity of $p$-shell and $sd$-shell nuclei. Valence-space nuclear shell-model wavefunctions generated by the BIGSTICK code are mapped to qubit registers using the Jordan-Wigner mapping (12 qubits for the $p$-shell and 24 qubits for the $sd$-shell), from which measures of the many-body entanglement ($n$-tangles) and magic (non-stabilizerness) are determined. While exact evaluations of these measures are possible for nuclei with a modest number of active nucleons, Monte Carlo simulations are required for the more complex nuclei. The broadly-applicable Pauli-String $IZ$ exact (PSIZe-) MCMC technique is introduced to accelerate the evaluation of measures of magic in deformed nuclei (with hierarchical wavefunctions), by factors of $\sim 8$ for some nuclei. Significant multi-nucleon entanglement is found in the $sd$-shell, dominated by proton-neutron configurations, along with significant measures of magic. This is evident not only for the deformed states, but also for nuclei on the path to instability via regions of shape coexistence and level inversion. These results indicate that quantum-computing resources will accelerate precision simulations of such nuclei and beyond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quark saturation in the QCD phase diagram Quantum Magic and Multi-Partite Entanglement in the Structure of Nuclei Optimization of Nuclear Mass Models Using Algorithms and Neural Networks Far-from-equilibrium attractors with Full Relativistic Boltzmann approach in 3+1 D: moments of distribution function and anisotropic flows $v_n$ Photo-nuclear reaction rates of $^{157,159}$Ho and $^{163,165}$Tm and their impact in the $γ$--process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1