克服灾难性遗忘的贝叶斯参数高效微调技术

IF 4.1 2区 计算机科学 Q1 ACOUSTICS IEEE/ACM Transactions on Audio, Speech, and Language Processing Pub Date : 2024-09-18 DOI:10.1109/TASLP.2024.3463395
Haolin Chen;Philip N. Garner
{"title":"克服灾难性遗忘的贝叶斯参数高效微调技术","authors":"Haolin Chen;Philip N. Garner","doi":"10.1109/TASLP.2024.3463395","DOIUrl":null,"url":null,"abstract":"We are motivated primarily by the adaptation of text-to-speech synthesis models; however we argue that more generic parameter-efficient fine-tuning (PEFT) is an appropriate framework to do such adaptation. Nevertheless, catastrophic forgetting remains an issue with PEFT, damaging the pre-trained model's inherent capabilities. We demonstrate that existing Bayesian learning techniques can be applied to PEFT to prevent catastrophic forgetting as long as the parameter shift of the fine-tuned layers can be calculated differentiably. In a principled series of experiments on language modeling and speech synthesis tasks, we utilize established Laplace approximations, including diagonal and Kronecker-factored approaches, to regularize PEFT with the low-rank adaptation (LoRA) and compare their performance in pre-training knowledge preservation. Our results demonstrate that catastrophic forgetting can be overcome by our methods without degrading the fine-tuning performance, and using the Kronecker-factored approximation produces a better preservation of the pre-training knowledge than the diagonal ones.","PeriodicalId":13332,"journal":{"name":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","volume":"32 ","pages":"4253-4262"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10683983","citationCount":"0","resultStr":"{\"title\":\"Bayesian Parameter-Efficient Fine-Tuning for Overcoming Catastrophic Forgetting\",\"authors\":\"Haolin Chen;Philip N. Garner\",\"doi\":\"10.1109/TASLP.2024.3463395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are motivated primarily by the adaptation of text-to-speech synthesis models; however we argue that more generic parameter-efficient fine-tuning (PEFT) is an appropriate framework to do such adaptation. Nevertheless, catastrophic forgetting remains an issue with PEFT, damaging the pre-trained model's inherent capabilities. We demonstrate that existing Bayesian learning techniques can be applied to PEFT to prevent catastrophic forgetting as long as the parameter shift of the fine-tuned layers can be calculated differentiably. In a principled series of experiments on language modeling and speech synthesis tasks, we utilize established Laplace approximations, including diagonal and Kronecker-factored approaches, to regularize PEFT with the low-rank adaptation (LoRA) and compare their performance in pre-training knowledge preservation. Our results demonstrate that catastrophic forgetting can be overcome by our methods without degrading the fine-tuning performance, and using the Kronecker-factored approximation produces a better preservation of the pre-training knowledge than the diagonal ones.\",\"PeriodicalId\":13332,\"journal\":{\"name\":\"IEEE/ACM Transactions on Audio, Speech, and Language Processing\",\"volume\":\"32 \",\"pages\":\"4253-4262\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10683983\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Audio, Speech, and Language Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10683983/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Audio, Speech, and Language Processing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10683983/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们的主要动机是对文本到语音合成模型进行调整;但我们认为,更通用的参数高效微调(PEFT)是进行这种调整的合适框架。然而,灾难性遗忘仍然是 PEFT 的一个问题,它损害了预训练模型的固有能力。我们证明,只要微调层的参数偏移可以微分计算,现有的贝叶斯学习技术就可以应用于 PEFT,以防止灾难性遗忘。在语言建模和语音合成任务的一系列原则性实验中,我们利用已有的拉普拉斯近似方法(包括对角线方法和克朗克因子方法)对 PEFT 与低秩适应(LoRA)进行了正则化,并比较了它们在预训练知识保存方面的性能。结果表明,我们的方法可以在不降低微调性能的情况下克服灾难性遗忘,而使用 Kronecker-factored近似方法比对角线近似方法能更好地保存训练前知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian Parameter-Efficient Fine-Tuning for Overcoming Catastrophic Forgetting
We are motivated primarily by the adaptation of text-to-speech synthesis models; however we argue that more generic parameter-efficient fine-tuning (PEFT) is an appropriate framework to do such adaptation. Nevertheless, catastrophic forgetting remains an issue with PEFT, damaging the pre-trained model's inherent capabilities. We demonstrate that existing Bayesian learning techniques can be applied to PEFT to prevent catastrophic forgetting as long as the parameter shift of the fine-tuned layers can be calculated differentiably. In a principled series of experiments on language modeling and speech synthesis tasks, we utilize established Laplace approximations, including diagonal and Kronecker-factored approaches, to regularize PEFT with the low-rank adaptation (LoRA) and compare their performance in pre-training knowledge preservation. Our results demonstrate that catastrophic forgetting can be overcome by our methods without degrading the fine-tuning performance, and using the Kronecker-factored approximation produces a better preservation of the pre-training knowledge than the diagonal ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE/ACM Transactions on Audio, Speech, and Language Processing
IEEE/ACM Transactions on Audio, Speech, and Language Processing ACOUSTICS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
11.30
自引率
11.10%
发文量
217
期刊介绍: The IEEE/ACM Transactions on Audio, Speech, and Language Processing covers audio, speech and language processing and the sciences that support them. In audio processing: transducers, room acoustics, active sound control, human audition, analysis/synthesis/coding of music, and consumer audio. In speech processing: areas such as speech analysis, synthesis, coding, speech and speaker recognition, speech production and perception, and speech enhancement. In language processing: speech and text analysis, understanding, generation, dialog management, translation, summarization, question answering and document indexing and retrieval, as well as general language modeling.
期刊最新文献
Enhancing Robustness of Speech Watermarking Using a Transformer-Based Framework Exploiting Acoustic Features FxLMS/F Based Tap Decomposed Adaptive Filter for Decentralized Active Noise Control System MRC-PASCL: A Few-Shot Machine Reading Comprehension Approach via Post-Training and Answer Span-Oriented Contrastive Learning Knowledge-Guided Transformer for Joint Theme and Emotion Classification of Chinese Classical Poetry WEDA: Exploring Copyright Protection for Large Language Model Downstream Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1