让我们一起影响算法:数百万粉丝如何建立对算法的集体理解并组织协调算法行动

Qing Xiao, Yuhang Zheng, Xianzhe Fan, Bingbing Zhang, Zhicong Lu
{"title":"让我们一起影响算法:数百万粉丝如何建立对算法的集体理解并组织协调算法行动","authors":"Qing Xiao, Yuhang Zheng, Xianzhe Fan, Bingbing Zhang, Zhicong Lu","doi":"arxiv-2409.10670","DOIUrl":null,"url":null,"abstract":"Previous research pays attention to how users strategically understand and\nconsciously interact with algorithms but mainly focuses on an individual level,\nmaking it difficult to explore how users within communities could develop a\ncollective understanding of algorithms and organize collective algorithmic\nactions. Through a two-year ethnography of online fan activities, this study\ninvestigates 43 core fans who always organize large-scale fans' collective\nactions and their corresponding general fan groups. This study aims to reveal\nhow these core fans mobilize millions of general fans through collective\nalgorithmic actions. These core fans reported the rhetorical strategies used to\npersuade general fans, the steps taken to build a collective understanding of\nalgorithms, and the collaborative processes that adapt collective actions\nacross platforms and cultures. Our findings highlight the key factors that\nenable computer-supported collective algorithmic actions and extend collective\naction research into large-scale domain targeting algorithms.","PeriodicalId":501032,"journal":{"name":"arXiv - CS - Social and Information Networks","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Let's Influence Algorithms Together: How Millions of Fans Build Collective Understanding of Algorithms and Organize Coordinated Algorithmic Actions\",\"authors\":\"Qing Xiao, Yuhang Zheng, Xianzhe Fan, Bingbing Zhang, Zhicong Lu\",\"doi\":\"arxiv-2409.10670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous research pays attention to how users strategically understand and\\nconsciously interact with algorithms but mainly focuses on an individual level,\\nmaking it difficult to explore how users within communities could develop a\\ncollective understanding of algorithms and organize collective algorithmic\\nactions. Through a two-year ethnography of online fan activities, this study\\ninvestigates 43 core fans who always organize large-scale fans' collective\\nactions and their corresponding general fan groups. This study aims to reveal\\nhow these core fans mobilize millions of general fans through collective\\nalgorithmic actions. These core fans reported the rhetorical strategies used to\\npersuade general fans, the steps taken to build a collective understanding of\\nalgorithms, and the collaborative processes that adapt collective actions\\nacross platforms and cultures. Our findings highlight the key factors that\\nenable computer-supported collective algorithmic actions and extend collective\\naction research into large-scale domain targeting algorithms.\",\"PeriodicalId\":501032,\"journal\":{\"name\":\"arXiv - CS - Social and Information Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Social and Information Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Social and Information Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以往的研究关注用户如何战略性地理解算法并有意识地与算法互动,但主要集中在个人层面,难以探索社区内的用户如何形成对算法的集体理解并组织集体算法互动。本研究通过对网络粉丝活动进行为期两年的人种学研究,调查了 43 名经常组织大规模粉丝集体活动的核心粉丝及其相应的普通粉丝群体。本研究旨在揭示这些核心粉丝如何通过集体算法行动动员数百万普通粉丝。这些核心粉丝报告了用于说服普通粉丝的修辞策略、建立对算法的集体理解所采取的步骤,以及调整跨平台和跨文化集体行动的协作过程。我们的研究结果强调了计算机支持集体算法行动的关键因素,并将集体行动研究扩展到了大规模领域目标算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Let's Influence Algorithms Together: How Millions of Fans Build Collective Understanding of Algorithms and Organize Coordinated Algorithmic Actions
Previous research pays attention to how users strategically understand and consciously interact with algorithms but mainly focuses on an individual level, making it difficult to explore how users within communities could develop a collective understanding of algorithms and organize collective algorithmic actions. Through a two-year ethnography of online fan activities, this study investigates 43 core fans who always organize large-scale fans' collective actions and their corresponding general fan groups. This study aims to reveal how these core fans mobilize millions of general fans through collective algorithmic actions. These core fans reported the rhetorical strategies used to persuade general fans, the steps taken to build a collective understanding of algorithms, and the collaborative processes that adapt collective actions across platforms and cultures. Our findings highlight the key factors that enable computer-supported collective algorithmic actions and extend collective action research into large-scale domain targeting algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
My Views Do Not Reflect Those of My Employer: Differences in Behavior of Organizations' Official and Personal Social Media Accounts A novel DFS/BFS approach towards link prediction Community Shaping in the Digital Age: A Temporal Fusion Framework for Analyzing Discourse Fragmentation in Online Social Networks Skill matching at scale: freelancer-project alignment for efficient multilingual candidate retrieval "It Might be Technically Impressive, But It's Practically Useless to Us": Practices, Challenges, and Opportunities for Cross-Functional Collaboration around AI within the News Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1