求助PDF
{"title":"密集图中汉密尔顿循环的相容幂","authors":"Xiaohan Cheng, Jie Hu, Donglei Yang","doi":"10.1002/jgt.23178","DOIUrl":null,"url":null,"abstract":"<p>The notion of incompatibility system was first proposed by Krivelevich, Lee and Sudakov to formulate the robustness of Hamiltonicity of Dirac graphs. Given a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n \n <mo>=</mo>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>V</mi>\n \n <mo>,</mo>\n \n <mi>E</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $G=(V,E)$</annotation>\n </semantics></math>, an <i>incompatibility system</i> <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math> over <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is a family <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n \n <mo>=</mo>\n \n <msub>\n <mrow>\n <mo>{</mo>\n \n <msub>\n <mi>F</mi>\n \n <mi>v</mi>\n </msub>\n \n <mo>}</mo>\n </mrow>\n <mrow>\n <mi>v</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}={\\{{F}_{v}\\}}_{v\\in V}$</annotation>\n </semantics></math> such that for every <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>∈</mo>\n \n <mi>V</mi>\n </mrow>\n <annotation> $v\\in V$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>v</mi>\n </msub>\n </mrow>\n <annotation> ${F}_{v}$</annotation>\n </semantics></math> is a family of edge pairs <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>e</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>e</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∈</mo>\n \n <mfenced>\n <mfrac>\n <mrow>\n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mn>2</mn>\n </mfrac>\n </mfenced>\n </mrow>\n <annotation> $\\{e,{e}^{^{\\prime} }\\}\\in \\left(\\genfrac{}{}{0ex}{}{E(G)}{2}\\right)$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n \n <mo>∩</mo>\n \n <msup>\n <mi>e</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>=</mo>\n <mrow>\n <mo>{</mo>\n \n <mi>v</mi>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $e\\cap {e}^{^{\\prime} }=\\{v\\}$</annotation>\n </semantics></math>. Moreover, for an integer <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow>\n <annotation> $k\\in {\\mathbb{N}}$</annotation>\n </semantics></math>, we say <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-<i>bounded</i> if for every vertex <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math> and its incident edge <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math>, there are at most <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math> pairs in <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>v</mi>\n </msub>\n </mrow>\n <annotation> ${F}_{v}$</annotation>\n </semantics></math> containing <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n </mrow>\n <annotation> $e$</annotation>\n </semantics></math>. Krivelevich, Lee and Sudakov proved that there is an universal constant <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n \n <mo>></mo>\n \n <mn>0</mn>\n </mrow>\n <annotation> $\\mu \\gt 0$</annotation>\n </semantics></math> such that for every Dirac graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and every <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n \n <mi>n</mi>\n </mrow>\n <annotation> $\\mu n$</annotation>\n </semantics></math>-bounded incompatibility system <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math> over <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>, there exists a Hamilton cycle <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n \n <mo>⊆</mo>\n \n <mi>G</mi>\n </mrow>\n <annotation> $C\\subseteq G$</annotation>\n </semantics></math> where every pair of adjacent edges <span></span><math>\n <semantics>\n <mrow>\n <mi>e</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>e</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n <annotation> $e,{e}^{^{\\prime} }$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <mi>C</mi>\n </mrow>\n <annotation> $C$</annotation>\n </semantics></math> satisfies <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>e</mi>\n \n <mo>,</mo>\n \n <msup>\n <mi>e</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∉</mo>\n \n <msub>\n <mi>F</mi>\n \n <mi>v</mi>\n </msub>\n </mrow>\n <annotation> $\\{e,{e}^{^{\\prime} }\\}\\notin {F}_{v}$</annotation>\n </semantics></math> for <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>{</mo>\n \n <mi>v</mi>\n \n <mo>}</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>e</mi>\n \n <mo>∩</mo>\n \n <msup>\n <mi>e</mi>\n \n <mo>′</mo>\n </msup>\n </mrow>\n <annotation> $\\{v\\}=e\\cap {e}^{^{\\prime} }$</annotation>\n </semantics></math>. This resolves a conjecture posed by Häggkvist in 1988 and such a Hamilton cycle is called <i>compatible</i> (with respect to <span></span><math>\n <semantics>\n <mrow>\n <mi>F</mi>\n </mrow>\n <annotation> ${\\rm{ {\\mathcal F} }}$</annotation>\n </semantics></math>). We study high powers of Hamilton cycles in this context and show that for every <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n \n <mo>></mo>\n \n <mn>0</mn>\n </mrow>\n <annotation> $\\gamma \\gt 0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow>\n <annotation> $k\\in {\\mathbb{N}}$</annotation>\n </semantics></math>, there exists a constant <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n \n <mo>></mo>\n \n <mn>0</mn>\n </mrow>\n <annotation> $\\mu \\gt 0$</annotation>\n </semantics></math> such that for sufficiently large <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n \n <mo>∈</mo>\n \n <mi>N</mi>\n </mrow>\n <annotation> $n\\in {\\mathbb{N}}$</annotation>\n </semantics></math> and every <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n \n <mi>n</mi>\n </mrow>\n <annotation> $\\mu n$</annotation>\n </semantics></math>-bounded incompatibility system over an <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>-vertex graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <mfenced>\n <mrow>\n <mfrac>\n <mi>k</mi>\n <mrow>\n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <mo>+</mo>\n \n <mi>γ</mi>\n </mrow>\n </mfenced>\n \n <mi>n</mi>\n </mrow>\n <annotation> $\\delta (G)\\ge \\left(\\frac{k}{k+1}+\\gamma \\right)n$</annotation>\n </semantics></math>, there exists a compatible <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>th power of a Hamilton cycle in <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math>. Moreover, we give a <span></span><math>\n <semantics>\n <mrow>\n <mi>μ</mi>\n \n <mi>n</mi>\n </mrow>\n <annotation> $\\mu n$</annotation>\n </semantics></math>-bounded construction which has minimum degree <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mi>k</mi>\n <mrow>\n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n </mfrac>\n \n <mi>n</mi>\n \n <mo>+</mo>\n \n <mi>Ω</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\frac{k}{k+1}n+{\\rm{\\Omega }}(n)$</annotation>\n </semantics></math> and contains no compatible <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>th power of a Hamilton cycle.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"108 2","pages":"257-273"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compatible powers of Hamilton cycles in dense graphs\",\"authors\":\"Xiaohan Cheng, Jie Hu, Donglei Yang\",\"doi\":\"10.1002/jgt.23178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The notion of incompatibility system was first proposed by Krivelevich, Lee and Sudakov to formulate the robustness of Hamiltonicity of Dirac graphs. Given a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n \\n <mo>=</mo>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>V</mi>\\n \\n <mo>,</mo>\\n \\n <mi>E</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $G=(V,E)$</annotation>\\n </semantics></math>, an <i>incompatibility system</i> <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <annotation> ${\\\\rm{ {\\\\mathcal F} }}$</annotation>\\n </semantics></math> over <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is a family <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n \\n <mo>=</mo>\\n \\n <msub>\\n <mrow>\\n <mo>{</mo>\\n \\n <msub>\\n <mi>F</mi>\\n \\n <mi>v</mi>\\n </msub>\\n \\n <mo>}</mo>\\n </mrow>\\n <mrow>\\n <mi>v</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>V</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\rm{ {\\\\mathcal F} }}={\\\\{{F}_{v}\\\\}}_{v\\\\in V}$</annotation>\\n </semantics></math> such that for every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>V</mi>\\n </mrow>\\n <annotation> $v\\\\in V$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mi>v</mi>\\n </msub>\\n </mrow>\\n <annotation> ${F}_{v}$</annotation>\\n </semantics></math> is a family of edge pairs <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mi>e</mi>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>e</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>∈</mo>\\n \\n <mfenced>\\n <mfrac>\\n <mrow>\\n <mi>E</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\{e,{e}^{^{\\\\prime} }\\\\}\\\\in \\\\left(\\\\genfrac{}{}{0ex}{}{E(G)}{2}\\\\right)$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n \\n <mo>∩</mo>\\n \\n <msup>\\n <mi>e</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo>=</mo>\\n <mrow>\\n <mo>{</mo>\\n \\n <mi>v</mi>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation> $e\\\\cap {e}^{^{\\\\prime} }=\\\\{v\\\\}$</annotation>\\n </semantics></math>. Moreover, for an integer <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>N</mi>\\n </mrow>\\n <annotation> $k\\\\in {\\\\mathbb{N}}$</annotation>\\n </semantics></math>, we say <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <annotation> ${\\\\rm{ {\\\\mathcal F} }}$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-<i>bounded</i> if for every vertex <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <annotation> $v$</annotation>\\n </semantics></math> and its incident edge <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n <annotation> $e$</annotation>\\n </semantics></math>, there are at most <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math> pairs in <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mi>v</mi>\\n </msub>\\n </mrow>\\n <annotation> ${F}_{v}$</annotation>\\n </semantics></math> containing <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n </mrow>\\n <annotation> $e$</annotation>\\n </semantics></math>. Krivelevich, Lee and Sudakov proved that there is an universal constant <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n \\n <mo>></mo>\\n \\n <mn>0</mn>\\n </mrow>\\n <annotation> $\\\\mu \\\\gt 0$</annotation>\\n </semantics></math> such that for every Dirac graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> and every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n \\n <mi>n</mi>\\n </mrow>\\n <annotation> $\\\\mu n$</annotation>\\n </semantics></math>-bounded incompatibility system <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <annotation> ${\\\\rm{ {\\\\mathcal F} }}$</annotation>\\n </semantics></math> over <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>, there exists a Hamilton cycle <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n \\n <mo>⊆</mo>\\n \\n <mi>G</mi>\\n </mrow>\\n <annotation> $C\\\\subseteq G$</annotation>\\n </semantics></math> where every pair of adjacent edges <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>e</mi>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>e</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n <annotation> $e,{e}^{^{\\\\prime} }$</annotation>\\n </semantics></math> of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>C</mi>\\n </mrow>\\n <annotation> $C$</annotation>\\n </semantics></math> satisfies <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mi>e</mi>\\n \\n <mo>,</mo>\\n \\n <msup>\\n <mi>e</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>∉</mo>\\n \\n <msub>\\n <mi>F</mi>\\n \\n <mi>v</mi>\\n </msub>\\n </mrow>\\n <annotation> $\\\\{e,{e}^{^{\\\\prime} }\\\\}\\\\notin {F}_{v}$</annotation>\\n </semantics></math> for <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>{</mo>\\n \\n <mi>v</mi>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>e</mi>\\n \\n <mo>∩</mo>\\n \\n <msup>\\n <mi>e</mi>\\n \\n <mo>′</mo>\\n </msup>\\n </mrow>\\n <annotation> $\\\\{v\\\\}=e\\\\cap {e}^{^{\\\\prime} }$</annotation>\\n </semantics></math>. This resolves a conjecture posed by Häggkvist in 1988 and such a Hamilton cycle is called <i>compatible</i> (with respect to <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>F</mi>\\n </mrow>\\n <annotation> ${\\\\rm{ {\\\\mathcal F} }}$</annotation>\\n </semantics></math>). We study high powers of Hamilton cycles in this context and show that for every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>γ</mi>\\n \\n <mo>></mo>\\n \\n <mn>0</mn>\\n </mrow>\\n <annotation> $\\\\gamma \\\\gt 0$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>N</mi>\\n </mrow>\\n <annotation> $k\\\\in {\\\\mathbb{N}}$</annotation>\\n </semantics></math>, there exists a constant <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n \\n <mo>></mo>\\n \\n <mn>0</mn>\\n </mrow>\\n <annotation> $\\\\mu \\\\gt 0$</annotation>\\n </semantics></math> such that for sufficiently large <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>∈</mo>\\n \\n <mi>N</mi>\\n </mrow>\\n <annotation> $n\\\\in {\\\\mathbb{N}}$</annotation>\\n </semantics></math> and every <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n \\n <mi>n</mi>\\n </mrow>\\n <annotation> $\\\\mu n$</annotation>\\n </semantics></math>-bounded incompatibility system over an <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>-vertex graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <mfenced>\\n <mrow>\\n <mfrac>\\n <mi>k</mi>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n \\n <mo>+</mo>\\n \\n <mi>γ</mi>\\n </mrow>\\n </mfenced>\\n \\n <mi>n</mi>\\n </mrow>\\n <annotation> $\\\\delta (G)\\\\ge \\\\left(\\\\frac{k}{k+1}+\\\\gamma \\\\right)n$</annotation>\\n </semantics></math>, there exists a compatible <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>th power of a Hamilton cycle in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math>. Moreover, we give a <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>μ</mi>\\n \\n <mi>n</mi>\\n </mrow>\\n <annotation> $\\\\mu n$</annotation>\\n </semantics></math>-bounded construction which has minimum degree <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mi>k</mi>\\n <mrow>\\n <mi>k</mi>\\n \\n <mo>+</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n \\n <mi>n</mi>\\n \\n <mo>+</mo>\\n \\n <mi>Ω</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>n</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\frac{k}{k+1}n+{\\\\rm{\\\\Omega }}(n)$</annotation>\\n </semantics></math> and contains no compatible <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>th power of a Hamilton cycle.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"108 2\",\"pages\":\"257-273\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23178\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23178","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用