3DIOC:LTI 系统的直接数据驱动反向最优控制

Chendi Qu, Jianping He, Xiaoming Duan
{"title":"3DIOC:LTI 系统的直接数据驱动反向最优控制","authors":"Chendi Qu, Jianping He, Xiaoming Duan","doi":"arxiv-2409.10884","DOIUrl":null,"url":null,"abstract":"This paper develops a direct data-driven inverse optimal control (3DIOC)\nalgorithm for the linear time-invariant (LTI) system who conducts a linear\nquadratic (LQ) control, where the underlying objective function is learned\ndirectly from measured input-output trajectories without system identification.\nBy introducing the Fundamental Lemma, we establish the input-output\nrepresentation of the LTI system. We accordingly propose a model-free\noptimality necessary condition for the forward LQ problem to build a connection\nbetween the objective function and collected data, with which the inverse\noptimal control problem is solved. We further improve the algorithm so that it\nrequires a less computation and data. Identifiability condition and\nperturbation analysis are provided. Simulations demonstrate the efficiency and\nperformance of our algorithms.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3DIOC: Direct Data-Driven Inverse Optimal Control for LTI Systems\",\"authors\":\"Chendi Qu, Jianping He, Xiaoming Duan\",\"doi\":\"arxiv-2409.10884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a direct data-driven inverse optimal control (3DIOC)\\nalgorithm for the linear time-invariant (LTI) system who conducts a linear\\nquadratic (LQ) control, where the underlying objective function is learned\\ndirectly from measured input-output trajectories without system identification.\\nBy introducing the Fundamental Lemma, we establish the input-output\\nrepresentation of the LTI system. We accordingly propose a model-free\\noptimality necessary condition for the forward LQ problem to build a connection\\nbetween the objective function and collected data, with which the inverse\\noptimal control problem is solved. We further improve the algorithm so that it\\nrequires a less computation and data. Identifiability condition and\\nperturbation analysis are provided. Simulations demonstrate the efficiency and\\nperformance of our algorithms.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对进行线性二次方(LQ)控制的线性时不变(LTI)系统开发了一种直接数据驱动的反最优控制(3DIOC)算法,该算法的基本目标函数直接从测量的输入输出轨迹中学习,无需系统识别。相应地,我们提出了前向 LQ 问题的无模型最优必要条件,从而在目标函数和收集的数据之间建立联系,并以此求解反向最优控制问题。我们进一步改进了算法,使其所需的计算量和数据量更少。我们还提供了可识别性条件和扰动分析。仿真证明了我们算法的效率和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3DIOC: Direct Data-Driven Inverse Optimal Control for LTI Systems
This paper develops a direct data-driven inverse optimal control (3DIOC) algorithm for the linear time-invariant (LTI) system who conducts a linear quadratic (LQ) control, where the underlying objective function is learned directly from measured input-output trajectories without system identification. By introducing the Fundamental Lemma, we establish the input-output representation of the LTI system. We accordingly propose a model-free optimality necessary condition for the forward LQ problem to build a connection between the objective function and collected data, with which the inverse optimal control problem is solved. We further improve the algorithm so that it requires a less computation and data. Identifiability condition and perturbation analysis are provided. Simulations demonstrate the efficiency and performance of our algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1