利用变压器缓解自适应交通信号控制中的部分可观测性

Xiaoyu Wang, Ayal Taitler, Scott Sanner, Baher Abdulhai
{"title":"利用变压器缓解自适应交通信号控制中的部分可观测性","authors":"Xiaoyu Wang, Ayal Taitler, Scott Sanner, Baher Abdulhai","doi":"arxiv-2409.10693","DOIUrl":null,"url":null,"abstract":"Efficient traffic signal control is essential for managing urban\ntransportation, minimizing congestion, and improving safety and sustainability.\nReinforcement Learning (RL) has emerged as a promising approach to enhancing\nadaptive traffic signal control (ATSC) systems, allowing controllers to learn\noptimal policies through interaction with the environment. However, challenges\narise due to partial observability (PO) in traffic networks, where agents have\nlimited visibility, hindering effectiveness. This paper presents the\nintegration of Transformer-based controllers into ATSC systems to address PO\neffectively. We propose strategies to enhance training efficiency and\neffectiveness, demonstrating improved coordination capabilities in real-world\nscenarios. The results showcase the Transformer-based model's ability to\ncapture significant information from historical observations, leading to better\ncontrol policies and improved traffic flow. This study highlights the potential\nof leveraging the advanced Transformer architecture to enhance urban\ntransportation management.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Partial Observability in Adaptive Traffic Signal Control with Transformers\",\"authors\":\"Xiaoyu Wang, Ayal Taitler, Scott Sanner, Baher Abdulhai\",\"doi\":\"arxiv-2409.10693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient traffic signal control is essential for managing urban\\ntransportation, minimizing congestion, and improving safety and sustainability.\\nReinforcement Learning (RL) has emerged as a promising approach to enhancing\\nadaptive traffic signal control (ATSC) systems, allowing controllers to learn\\noptimal policies through interaction with the environment. However, challenges\\narise due to partial observability (PO) in traffic networks, where agents have\\nlimited visibility, hindering effectiveness. This paper presents the\\nintegration of Transformer-based controllers into ATSC systems to address PO\\neffectively. We propose strategies to enhance training efficiency and\\neffectiveness, demonstrating improved coordination capabilities in real-world\\nscenarios. The results showcase the Transformer-based model's ability to\\ncapture significant information from historical observations, leading to better\\ncontrol policies and improved traffic flow. This study highlights the potential\\nof leveraging the advanced Transformer architecture to enhance urban\\ntransportation management.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10693\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高效的交通信号控制对于管理城市交通、减少拥堵、提高安全性和可持续性至关重要。强化学习(RL)已成为增强自适应交通信号控制系统(ATSC)的一种有前途的方法,它允许控制人员通过与环境的交互来学习最优策略。然而,由于交通网络中的部分可观测性(PO),代理的可视性有限,从而阻碍了系统的有效性,因此挑战也随之而来。本文介绍了如何将基于变压器的控制器集成到 ATSC 系统中,以有效解决部分可观测性问题。我们提出了提高训练效率和效果的策略,并在实际场景中展示了改进的协调能力。研究结果表明,基于变压器的模型能够从历史观测中获取重要信息,从而制定出更好的控制策略并改善交通流量。这项研究强调了利用先进的 Transformer 架构加强城市交通管理的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitigating Partial Observability in Adaptive Traffic Signal Control with Transformers
Efficient traffic signal control is essential for managing urban transportation, minimizing congestion, and improving safety and sustainability. Reinforcement Learning (RL) has emerged as a promising approach to enhancing adaptive traffic signal control (ATSC) systems, allowing controllers to learn optimal policies through interaction with the environment. However, challenges arise due to partial observability (PO) in traffic networks, where agents have limited visibility, hindering effectiveness. This paper presents the integration of Transformer-based controllers into ATSC systems to address PO effectively. We propose strategies to enhance training efficiency and effectiveness, demonstrating improved coordination capabilities in real-world scenarios. The results showcase the Transformer-based model's ability to capture significant information from historical observations, leading to better control policies and improved traffic flow. This study highlights the potential of leveraging the advanced Transformer architecture to enhance urban transportation management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1