近端梯度动力学:单调性、指数收敛及应用

Anand Gokhale, Alexander Davydov, Francesco Bullo
{"title":"近端梯度动力学:单调性、指数收敛及应用","authors":"Anand Gokhale, Alexander Davydov, Francesco Bullo","doi":"arxiv-2409.10664","DOIUrl":null,"url":null,"abstract":"In this letter, we study the proximal gradient dynamics. This\nrecently-proposed continuous-time dynamics solves optimization problems whose\ncost functions are separable into a nonsmooth convex and a smooth component.\nFirst, we show that the cost function decreases monotonically along the\ntrajectories of the proximal gradient dynamics. We then introduce a new\ncondition that guarantees exponential convergence of the cost function to its\noptimal value, and show that this condition implies the proximal\nPolyak-{\\L}ojasiewicz condition. We also show that the proximal\nPolyak-{\\L}ojasiewicz condition guarantees exponential convergence of the cost\nfunction. Moreover, we extend these results to time-varying optimization\nproblems, providing bounds for equilibrium tracking. Finally, we discuss\napplications of these findings, including the LASSO problem, quadratic\noptimization with polytopic constraints, and certain matrix based problems.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"35 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proximal Gradient Dynamics: Monotonicity, Exponential Convergence, and Applications\",\"authors\":\"Anand Gokhale, Alexander Davydov, Francesco Bullo\",\"doi\":\"arxiv-2409.10664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we study the proximal gradient dynamics. This\\nrecently-proposed continuous-time dynamics solves optimization problems whose\\ncost functions are separable into a nonsmooth convex and a smooth component.\\nFirst, we show that the cost function decreases monotonically along the\\ntrajectories of the proximal gradient dynamics. We then introduce a new\\ncondition that guarantees exponential convergence of the cost function to its\\noptimal value, and show that this condition implies the proximal\\nPolyak-{\\\\L}ojasiewicz condition. We also show that the proximal\\nPolyak-{\\\\L}ojasiewicz condition guarantees exponential convergence of the cost\\nfunction. Moreover, we extend these results to time-varying optimization\\nproblems, providing bounds for equilibrium tracking. Finally, we discuss\\napplications of these findings, including the LASSO problem, quadratic\\noptimization with polytopic constraints, and certain matrix based problems.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10664\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们研究了近似梯度动力学。首先,我们证明了成本函数沿着近似梯度动力学的轨迹单调递减。然后,我们引入一个新条件,保证成本函数指数收敛到其最优值,并证明这个条件意味着近似波利亚克-{L}ojasiewicz 条件。我们还证明,proximalPolyak-{L}ojasiewicz 条件保证了成本函数的指数收敛。此外,我们还将这些结果扩展到了时变优化问题,为均衡跟踪提供了边界。最后,我们讨论了这些发现的应用,包括 LASSO 问题、带多点约束的二次优化以及某些基于矩阵的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proximal Gradient Dynamics: Monotonicity, Exponential Convergence, and Applications
In this letter, we study the proximal gradient dynamics. This recently-proposed continuous-time dynamics solves optimization problems whose cost functions are separable into a nonsmooth convex and a smooth component. First, we show that the cost function decreases monotonically along the trajectories of the proximal gradient dynamics. We then introduce a new condition that guarantees exponential convergence of the cost function to its optimal value, and show that this condition implies the proximal Polyak-{\L}ojasiewicz condition. We also show that the proximal Polyak-{\L}ojasiewicz condition guarantees exponential convergence of the cost function. Moreover, we extend these results to time-varying optimization problems, providing bounds for equilibrium tracking. Finally, we discuss applications of these findings, including the LASSO problem, quadratic optimization with polytopic constraints, and certain matrix based problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1