用于自动驾驶系统的 XLM:全面回顾

Sonda Fourati, Wael Jaafar, Noura Baccar, Safwan Alfattani
{"title":"用于自动驾驶系统的 XLM:全面回顾","authors":"Sonda Fourati, Wael Jaafar, Noura Baccar, Safwan Alfattani","doi":"arxiv-2409.10484","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) have showcased remarkable proficiency in various\ninformation-processing tasks. These tasks span from extracting data and\nsummarizing literature to generating content, predictive modeling,\ndecision-making, and system controls. Moreover, Vision Large Models (VLMs) and\nMultimodal LLMs (MLLMs), which represent the next generation of language\nmodels, a.k.a., XLMs, can combine and integrate many data modalities with the\nstrength of language understanding, thus advancing several information-based\nsystems, such as Autonomous Driving Systems (ADS). Indeed, by combining\nlanguage communication with multimodal sensory inputs, e.g., panoramic images\nand LiDAR or radar data, accurate driving actions can be taken. In this\ncontext, we provide in this survey paper a comprehensive overview of the\npotential of XLMs towards achieving autonomous driving. Specifically, we review\nthe relevant literature on ADS and XLMs, including their architectures, tools,\nand frameworks. Then, we detail the proposed approaches to deploy XLMs for\nautonomous driving solutions. Finally, we provide the related challenges to XLM\ndeployment for ADS and point to future research directions aiming to enable XLM\nadoption in future ADS frameworks.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XLM for Autonomous Driving Systems: A Comprehensive Review\",\"authors\":\"Sonda Fourati, Wael Jaafar, Noura Baccar, Safwan Alfattani\",\"doi\":\"arxiv-2409.10484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large Language Models (LLMs) have showcased remarkable proficiency in various\\ninformation-processing tasks. These tasks span from extracting data and\\nsummarizing literature to generating content, predictive modeling,\\ndecision-making, and system controls. Moreover, Vision Large Models (VLMs) and\\nMultimodal LLMs (MLLMs), which represent the next generation of language\\nmodels, a.k.a., XLMs, can combine and integrate many data modalities with the\\nstrength of language understanding, thus advancing several information-based\\nsystems, such as Autonomous Driving Systems (ADS). Indeed, by combining\\nlanguage communication with multimodal sensory inputs, e.g., panoramic images\\nand LiDAR or radar data, accurate driving actions can be taken. In this\\ncontext, we provide in this survey paper a comprehensive overview of the\\npotential of XLMs towards achieving autonomous driving. Specifically, we review\\nthe relevant literature on ADS and XLMs, including their architectures, tools,\\nand frameworks. Then, we detail the proposed approaches to deploy XLMs for\\nautonomous driving solutions. Finally, we provide the related challenges to XLM\\ndeployment for ADS and point to future research directions aiming to enable XLM\\nadoption in future ADS frameworks.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.10484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大型语言模型(LLM)在各种信息处理任务中表现出了非凡的能力。这些任务包括提取数据、总结文献、生成内容、预测建模、决策和系统控制。此外,代表下一代语言模型(又称 XLM)的视觉大模型(VLM)和多模态 LLM(MLLM)可以将多种数据模态与语言理解能力相结合,从而推动自动驾驶系统(ADS)等基于信息的系统的发展。事实上,通过将语言交流与多模态感官输入(如全景图像、激光雷达或雷达数据)相结合,可以采取准确的驾驶行动。在此背景下,我们在本调查报告中全面概述了 XLM 在实现自动驾驶方面的潜力。具体来说,我们回顾了 ADS 和 XLM 的相关文献,包括其架构、工具和框架。然后,我们详细介绍了为自动驾驶解决方案部署 XLM 的建议方法。最后,我们提出了为 ADS 部署 XLM 所面临的相关挑战,并指出了未来的研究方向,旨在使 XLM 在未来的 ADS 框架中得到采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
XLM for Autonomous Driving Systems: A Comprehensive Review
Large Language Models (LLMs) have showcased remarkable proficiency in various information-processing tasks. These tasks span from extracting data and summarizing literature to generating content, predictive modeling, decision-making, and system controls. Moreover, Vision Large Models (VLMs) and Multimodal LLMs (MLLMs), which represent the next generation of language models, a.k.a., XLMs, can combine and integrate many data modalities with the strength of language understanding, thus advancing several information-based systems, such as Autonomous Driving Systems (ADS). Indeed, by combining language communication with multimodal sensory inputs, e.g., panoramic images and LiDAR or radar data, accurate driving actions can be taken. In this context, we provide in this survey paper a comprehensive overview of the potential of XLMs towards achieving autonomous driving. Specifically, we review the relevant literature on ADS and XLMs, including their architectures, tools, and frameworks. Then, we detail the proposed approaches to deploy XLMs for autonomous driving solutions. Finally, we provide the related challenges to XLM deployment for ADS and point to future research directions aiming to enable XLM adoption in future ADS frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1