DSFormer-LRTC:利用低张量压缩进行交通预测的动态空间变换器

IF 7.9 1区 工程技术 Q1 ENGINEERING, CIVIL IEEE Transactions on Intelligent Transportation Systems Pub Date : 2024-09-18 DOI:10.1109/TITS.2024.3436523
Jianli Zhao;Futong Zhuo;Qiuxia Sun;Qing Li;Yiran Hua;Jianye Zhao
{"title":"DSFormer-LRTC:利用低张量压缩进行交通预测的动态空间变换器","authors":"Jianli Zhao;Futong Zhuo;Qiuxia Sun;Qing Li;Yiran Hua;Jianye Zhao","doi":"10.1109/TITS.2024.3436523","DOIUrl":null,"url":null,"abstract":"Traffic flow forecasting is challenging due to the intricate spatio-temporal correlations in traffic patterns. Previous works captured spatial dependencies based on graph neural networks and used fixed graph construction methods to characterize spatial relationships, which limits the ability of models to capture dynamic and long-range spatial dependencies. Meanwhile, prior studies did not consider the issue of a large number of redundant parameters in traffic prediction models, which not only increases the storage cost of the model but also reduces its generalization ability. To address the above challenges, we propose a Dynamic Spatial Transformer for Traffic Forecasting with Low-Rank Tensor Compression (DSFormer-LRTC). Specifically, we constructed a global spatial Transformer to capture remote spatial dependencies, and a distance-based mask matrix is used in local spatial Transformer to enhance the adjacent spatial influence. To reduce the complexity of the model, the model adopts a design that separates temporal and spatial. Meanwhile, we introduce low-rank tensor decomposition to reconstruct the parameter matrix in Transformer module to compress the proposed model. Experimental results show that DSFormer-LRTC achieves state-of-the-art performance on four real-world datasets. The experimental analysis of attention matrix also proves that the model can learn dynamic and distant spatial features. Finally, the compressed model parameters reduce the original parameter size by two-thirds, while significantly outperforming the baseline model in terms of computational efficiency.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"25 11","pages":"16323-16335"},"PeriodicalIF":7.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DSFormer-LRTC: Dynamic Spatial Transformer for Traffic Forecasting With Low-Rank Tensor Compression\",\"authors\":\"Jianli Zhao;Futong Zhuo;Qiuxia Sun;Qing Li;Yiran Hua;Jianye Zhao\",\"doi\":\"10.1109/TITS.2024.3436523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic flow forecasting is challenging due to the intricate spatio-temporal correlations in traffic patterns. Previous works captured spatial dependencies based on graph neural networks and used fixed graph construction methods to characterize spatial relationships, which limits the ability of models to capture dynamic and long-range spatial dependencies. Meanwhile, prior studies did not consider the issue of a large number of redundant parameters in traffic prediction models, which not only increases the storage cost of the model but also reduces its generalization ability. To address the above challenges, we propose a Dynamic Spatial Transformer for Traffic Forecasting with Low-Rank Tensor Compression (DSFormer-LRTC). Specifically, we constructed a global spatial Transformer to capture remote spatial dependencies, and a distance-based mask matrix is used in local spatial Transformer to enhance the adjacent spatial influence. To reduce the complexity of the model, the model adopts a design that separates temporal and spatial. Meanwhile, we introduce low-rank tensor decomposition to reconstruct the parameter matrix in Transformer module to compress the proposed model. Experimental results show that DSFormer-LRTC achieves state-of-the-art performance on four real-world datasets. The experimental analysis of attention matrix also proves that the model can learn dynamic and distant spatial features. Finally, the compressed model parameters reduce the original parameter size by two-thirds, while significantly outperforming the baseline model in terms of computational efficiency.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"25 11\",\"pages\":\"16323-16335\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10682604/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10682604/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

由于交通模式具有错综复杂的时空相关性,因此交通流量预测具有挑战性。以往的研究基于图神经网络捕捉空间依赖关系,并使用固定的图构建方法来描述空间关系,这限制了模型捕捉动态和长程空间依赖关系的能力。同时,之前的研究没有考虑交通预测模型中存在大量冗余参数的问题,这不仅增加了模型的存储成本,也降低了模型的泛化能力。为解决上述难题,我们提出了低张量压缩交通预测动态空间变换器(DSFormer-LRTC)。具体来说,我们构建了一个全局空间变换器来捕捉远程空间依赖关系,并在局部空间变换器中使用基于距离的掩码矩阵来增强相邻空间的影响。为了降低模型的复杂性,模型采用了时间和空间分离的设计。同时,我们在 Transformer 模块中引入了低秩张量分解来重构参数矩阵,从而压缩了所提出的模型。实验结果表明,DSFormer-LRTC 在四个实际数据集上取得了最先进的性能。对注意力矩阵的实验分析也证明,该模型可以学习动态和远距离空间特征。最后,压缩后的模型参数将原始参数大小减少了三分之二,同时在计算效率方面明显优于基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DSFormer-LRTC: Dynamic Spatial Transformer for Traffic Forecasting With Low-Rank Tensor Compression
Traffic flow forecasting is challenging due to the intricate spatio-temporal correlations in traffic patterns. Previous works captured spatial dependencies based on graph neural networks and used fixed graph construction methods to characterize spatial relationships, which limits the ability of models to capture dynamic and long-range spatial dependencies. Meanwhile, prior studies did not consider the issue of a large number of redundant parameters in traffic prediction models, which not only increases the storage cost of the model but also reduces its generalization ability. To address the above challenges, we propose a Dynamic Spatial Transformer for Traffic Forecasting with Low-Rank Tensor Compression (DSFormer-LRTC). Specifically, we constructed a global spatial Transformer to capture remote spatial dependencies, and a distance-based mask matrix is used in local spatial Transformer to enhance the adjacent spatial influence. To reduce the complexity of the model, the model adopts a design that separates temporal and spatial. Meanwhile, we introduce low-rank tensor decomposition to reconstruct the parameter matrix in Transformer module to compress the proposed model. Experimental results show that DSFormer-LRTC achieves state-of-the-art performance on four real-world datasets. The experimental analysis of attention matrix also proves that the model can learn dynamic and distant spatial features. Finally, the compressed model parameters reduce the original parameter size by two-thirds, while significantly outperforming the baseline model in terms of computational efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Intelligent Transportation Systems
IEEE Transactions on Intelligent Transportation Systems 工程技术-工程:电子与电气
CiteScore
14.80
自引率
12.90%
发文量
1872
审稿时长
7.5 months
期刊介绍: The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.
期刊最新文献
Table of Contents IEEE Intelligent Transportation Systems Society Information Scanning the Issue IEEE INTELLIGENT TRANSPORTATION SYSTEMS SOCIETY Fine-Grained Satisfaction Analysis of In-Vehicle Infotainment Systems Using Improved Kano Model and Cumulative Prospect Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1