非线性动力学的分布式深度库普曼学习

Wenjian Hao, Lili Wang, Ayush Rai, Shaoshuai Mou
{"title":"非线性动力学的分布式深度库普曼学习","authors":"Wenjian Hao, Lili Wang, Ayush Rai, Shaoshuai Mou","doi":"arxiv-2409.11586","DOIUrl":null,"url":null,"abstract":"Koopman operator theory has proven to be highly significant in system\nidentification, even for challenging scenarios involving nonlinear time-varying\nsystems (NTVS). In this context, we examine a network of connected agents, each\nwith limited observation capabilities, aiming to estimate the dynamics of an\nNTVS collaboratively. Drawing inspiration from Koopman operator theory, deep\nneural networks, and distributed consensus, we introduce a distributed\nalgorithm for deep Koopman learning of the dynamics of an NTVS. This approach\nenables individual agents to approximate the entire dynamics despite having\naccess to only partial state observations. We guarantee consensus not only on\nthe estimated dynamics but also on its structure, i.e., the matrices\nencountered in the linear equation of the lifted Koopman system. We provide\ntheoretical insights into the convergence of the learning process and\naccompanying numerical simulations.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Deep Koopman Learning for Nonlinear Dynamics\",\"authors\":\"Wenjian Hao, Lili Wang, Ayush Rai, Shaoshuai Mou\",\"doi\":\"arxiv-2409.11586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Koopman operator theory has proven to be highly significant in system\\nidentification, even for challenging scenarios involving nonlinear time-varying\\nsystems (NTVS). In this context, we examine a network of connected agents, each\\nwith limited observation capabilities, aiming to estimate the dynamics of an\\nNTVS collaboratively. Drawing inspiration from Koopman operator theory, deep\\nneural networks, and distributed consensus, we introduce a distributed\\nalgorithm for deep Koopman learning of the dynamics of an NTVS. This approach\\nenables individual agents to approximate the entire dynamics despite having\\naccess to only partial state observations. We guarantee consensus not only on\\nthe estimated dynamics but also on its structure, i.e., the matrices\\nencountered in the linear equation of the lifted Koopman system. We provide\\ntheoretical insights into the convergence of the learning process and\\naccompanying numerical simulations.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

事实证明,库普曼算子理论在系统识别方面非常重要,即使是在涉及非线性时变系统(NTVS)的挑战性场景中也是如此。在此背景下,我们研究了一个由相互连接的代理组成的网络,每个代理的观察能力都很有限,目的是协同估算非线性时变系统(NTVS)的动态。受到库普曼算子理论、深度神经网络和分布式共识的启发,我们引入了一种分布式算法,用于对 NTVS 的动态进行深度库普曼学习。这种方法可以让单个代理近似整个动态,尽管它们只能获得部分状态观测数据。我们不仅保证在估计动态上达成共识,还保证在其结构上达成共识,即在提升库普曼系统的线性方程中遇到的矩阵。我们提供了对学习过程收敛性的理论见解和相应的数值模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Deep Koopman Learning for Nonlinear Dynamics
Koopman operator theory has proven to be highly significant in system identification, even for challenging scenarios involving nonlinear time-varying systems (NTVS). In this context, we examine a network of connected agents, each with limited observation capabilities, aiming to estimate the dynamics of an NTVS collaboratively. Drawing inspiration from Koopman operator theory, deep neural networks, and distributed consensus, we introduce a distributed algorithm for deep Koopman learning of the dynamics of an NTVS. This approach enables individual agents to approximate the entire dynamics despite having access to only partial state observations. We guarantee consensus not only on the estimated dynamics but also on its structure, i.e., the matrices encountered in the linear equation of the lifted Koopman system. We provide theoretical insights into the convergence of the learning process and accompanying numerical simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1