{"title":"3PFS:通过人脸交换保护行人隐私","authors":"Zixian Zhao;Xingchen Zhang;Yiannis Demiris","doi":"10.1109/TITS.2024.3421917","DOIUrl":null,"url":null,"abstract":"In the era of artificial intelligence, privacy has become a paramount concern, especially within intelligent transportation systems (ITS) where pedestrians are frequently captured by vehicle-mounted cameras for deep learning model training. To address this, we introduce 3PFS, a novel method designed to protect pedestrian privacy via face swapping while preserving the utility of processed images. Our method consists of a pedestrian detector, a face detector, a pre-processing module, a source face selection algorithm, and a face swapping algorithm. After detecting pedestrians and their corresponding faces, the pre-processing module enhances image quality. Our unique source face selection algorithm then chooses an appropriate face from our source face library, which is subsequently swapped with the target face using a face swapping algorithm. Notably, with the combination of a pedestrian tracking algorithm, our 3PFS is well-suited for video anonymization. Additionally, we propose a comprehensive evaluation strategy to evaluate the performance of pedestrian anonymization methods. We validate the effectiveness of 3PFS through extensive experiments on a dataset we created based on the publicly available JAAD dataset and on videos captured using our robotic wheelchair.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"25 11","pages":"16845-16854"},"PeriodicalIF":7.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3PFS: Protecting Pedestrian Privacy Through Face Swapping\",\"authors\":\"Zixian Zhao;Xingchen Zhang;Yiannis Demiris\",\"doi\":\"10.1109/TITS.2024.3421917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the era of artificial intelligence, privacy has become a paramount concern, especially within intelligent transportation systems (ITS) where pedestrians are frequently captured by vehicle-mounted cameras for deep learning model training. To address this, we introduce 3PFS, a novel method designed to protect pedestrian privacy via face swapping while preserving the utility of processed images. Our method consists of a pedestrian detector, a face detector, a pre-processing module, a source face selection algorithm, and a face swapping algorithm. After detecting pedestrians and their corresponding faces, the pre-processing module enhances image quality. Our unique source face selection algorithm then chooses an appropriate face from our source face library, which is subsequently swapped with the target face using a face swapping algorithm. Notably, with the combination of a pedestrian tracking algorithm, our 3PFS is well-suited for video anonymization. Additionally, we propose a comprehensive evaluation strategy to evaluate the performance of pedestrian anonymization methods. We validate the effectiveness of 3PFS through extensive experiments on a dataset we created based on the publicly available JAAD dataset and on videos captured using our robotic wheelchair.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"25 11\",\"pages\":\"16845-16854\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10682960/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10682960/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
3PFS: Protecting Pedestrian Privacy Through Face Swapping
In the era of artificial intelligence, privacy has become a paramount concern, especially within intelligent transportation systems (ITS) where pedestrians are frequently captured by vehicle-mounted cameras for deep learning model training. To address this, we introduce 3PFS, a novel method designed to protect pedestrian privacy via face swapping while preserving the utility of processed images. Our method consists of a pedestrian detector, a face detector, a pre-processing module, a source face selection algorithm, and a face swapping algorithm. After detecting pedestrians and their corresponding faces, the pre-processing module enhances image quality. Our unique source face selection algorithm then chooses an appropriate face from our source face library, which is subsequently swapped with the target face using a face swapping algorithm. Notably, with the combination of a pedestrian tracking algorithm, our 3PFS is well-suited for video anonymization. Additionally, we propose a comprehensive evaluation strategy to evaluate the performance of pedestrian anonymization methods. We validate the effectiveness of 3PFS through extensive experiments on a dataset we created based on the publicly available JAAD dataset and on videos captured using our robotic wheelchair.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.