从有限集合识别线性系统的样本复杂性界限

Nicolas Chatzikiriakos, Andrea Iannelli
{"title":"从有限集合识别线性系统的样本复杂性界限","authors":"Nicolas Chatzikiriakos, Andrea Iannelli","doi":"arxiv-2409.11141","DOIUrl":null,"url":null,"abstract":"This paper considers a finite sample perspective on the problem of\nidentifying an LTI system from a finite set of possible systems using\ntrajectory data. To this end, we use the maximum likelihood estimator to\nidentify the true system and provide an upper bound for its sample complexity.\nCrucially, the derived bound does not rely on a potentially restrictive\nstability assumption. Additionally, we leverage tools from information theory\nto provide a lower bound to the sample complexity that holds independently of\nthe used estimator. The derived sample complexity bounds are analyzed\nanalytically and numerically.","PeriodicalId":501175,"journal":{"name":"arXiv - EE - Systems and Control","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sample Complexity Bounds for Linear System Identification from a Finite Set\",\"authors\":\"Nicolas Chatzikiriakos, Andrea Iannelli\",\"doi\":\"arxiv-2409.11141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers a finite sample perspective on the problem of\\nidentifying an LTI system from a finite set of possible systems using\\ntrajectory data. To this end, we use the maximum likelihood estimator to\\nidentify the true system and provide an upper bound for its sample complexity.\\nCrucially, the derived bound does not rely on a potentially restrictive\\nstability assumption. Additionally, we leverage tools from information theory\\nto provide a lower bound to the sample complexity that holds independently of\\nthe used estimator. The derived sample complexity bounds are analyzed\\nanalytically and numerically.\",\"PeriodicalId\":501175,\"journal\":{\"name\":\"arXiv - EE - Systems and Control\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.11141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文从有限样本的角度探讨了利用轨迹数据从有限的可能系统集合中识别 LTI 系统的问题。为此,我们使用最大似然估计器来识别真实系统,并为其样本复杂度提供了一个上限。至关重要的是,推导出的上限并不依赖于潜在的可限制性假设。此外,我们还利用信息论工具提供了样本复杂度的下限,该下限与所使用的估计器无关。我们对推导出的样本复杂度边界进行了分析和数值计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sample Complexity Bounds for Linear System Identification from a Finite Set
This paper considers a finite sample perspective on the problem of identifying an LTI system from a finite set of possible systems using trajectory data. To this end, we use the maximum likelihood estimator to identify the true system and provide an upper bound for its sample complexity. Crucially, the derived bound does not rely on a potentially restrictive stability assumption. Additionally, we leverage tools from information theory to provide a lower bound to the sample complexity that holds independently of the used estimator. The derived sample complexity bounds are analyzed analytically and numerically.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data-Efficient Quadratic Q-Learning Using LMIs On the Stability of Consensus Control under Rotational Ambiguities System-Level Efficient Performance of EMLA-Driven Heavy-Duty Manipulators via Bilevel Optimization Framework with a Leader--Follower Scenario ReLU Surrogates in Mixed-Integer MPC for Irrigation Scheduling Model-Free Generic Robust Control for Servo-Driven Actuation Mechanisms with Experimental Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1